

CytoTune®-iPS 2.0 Sendai Reprogramming Kit

For efficient, integration-free reprogramming of somatic cells into induced pluripotent stem cells (iPSC)

Catalog Numbers A16517, A16518

Publication Number MAN0009378 Revision 1.0

For Research Use Only. Not for use in diagnostic procedures.

Information in this document is subject to change without notice.

DISCLAIMER

LIFE TECHNOLOGIES CORPORATION AND/OR ITS AFFILIATE(S) DISCLAIM ALL WARRANTIES WITH RESPECT TO THIS DOCUMENT, EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. TO THE EXTENT ALLOWED BY LAW, IN NO EVENT SHALL LIFE TECHNOLOGIES AND/OR ITS AFFILIATE(S) BE LIABLE, WHETHER IN CONTRACT, TORT, WARRANTY, OR UNDER ANY STATUTE OR ON ANY OTHER BASIS FOR SPECIAL, INCIDENTAL, INDIRECT, PUNITIVE, MULTIPLE OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING FROM THIS DOCUMENT, INCLUDING BUT NOT LIMITED TO THE USE THEREOF.

PURCHASER NOTIFICATION

CytoTune®-iPS 2.0 Sendai Reprogramming Kit

This kit is a product of DNAVEC Corporation and supplied to the Life Technologies Corporation. The right to use the four Yamanaka factors for reprogramming in this kit has been granted by iPS Academia Japan to DNAVEC Corporation.

Important Licensing Information:

These products may be covered by one or more Limited Use Label Licenses. By use of these products, you accept the terms and conditions of all applicable Limited Use Label Licenses.

TRADEMARKS

The trademarks mentioned herein are the property of Life Technologies Corporation and/or its affiliate(s) or their respective owners.

 $\label{eq:cytoTune} CytoTune \ is \ a \ registered \ trademark \ of \ DNAVEC \ Corporation.$

Parafilm is a registered trademark of Bemis Company, Inc.

TaqMan is a registered trademark of Roche Molecular Systems, Inc, used under permission and license.

Triton is a registered trademark of Union Carbide Corporation.

TRIzol is a registered trademark of Molecular Research Center, Inc.

© 2013 Life Technologies Corporation. All rights reserved.

Table of Contents

Product Information	2
Kit Contents and Storage	2
Description of the System	3
Safety Features of the System	6
Before You Begin	7
Guidelines for Generating iPSCs	7
Reprogramming Fibroblasts	9
Experiment Outline (Feeder-Dependent)	9
Reprogramming Fibroblasts (Feeder-Dependent)	10
Experiment Outline (Feeder-Free)	14
Reprogramming Fibroblasts (Feeder-Free)	15
Reprogramming PBMCs	19
Experiment Outline	19
Reprogramming Peripheral Blood Mononuclear Cells (PBMCs)	20
Reprogramming CD34 ⁺ Cells	25
Experiment Outline	25
Reprogramming StemPro [®] CD34 ⁺ Cells	26
Identifying and Picking iPSC Colonies	31
Visual Identification	31
Live Staining	32
Picking iPSC Colonies	34
Generating Vector-Free iPSCs	35
Generating Vector-Free iPSCs	35
Troubleshooting	38
Appendix A: Recipes	39
Preparing Media and Reagents	
Appendix B: Preparing Culture Vessels	43
Preparing MEF Culture Dishes	
Coating Culture Vessels with Vitronectin	45
Coating Culture Vessels with Geltrex [®] Matrix	47
Appendix C: Support Protocols	48
CytoTune [®] -EmGFP Reporter Control Transduction	
Passaging iPSCs Using EDTA	51
Cryopreserving iPSCs	52
Appendix D: Ordering Information	54
Accessory Products	
Documentation and Support	57
Obtaining Support	
References	58

Product Information

Kit Contents and Storage

Kit contents

The CytoTune[®]-iPS 2.0 Sendai Reprogramming Kit contains three CytoTune[®] 2.0 reprogramming vectors that are used for delivering and expressing key genetic factors necessary for reprogramming somatic cells into iPSCs.

The kit is available in two sizes: 1 pack (1 × 3 vials) and 3 packs (3 × 3 vials), with each vial containing 100 μ L of one of the CytoTune[®] 2.0 reprogramming vector at a concentration of \geq 8 × 10⁷ cell infectious units/mL (CIU/mL).

Note: The titer of each CytoTune[®] 2.0 reprogramming vector is lot-dependent. For the specific titer of your vectors, refer to the Certificate of Analysis (CoA) available on our website. Go to **www.lifetechnologies.com/cytotunegfp** and search for the CoA by product lot number, which is printed on the vial.

	Amount	
Cap color	A16517	A16518
clear	100 µL	$3 \times 100 \ \mu L$
white	100 µL	$3 \times 100 \ \mu L$
red	100 μL	$3 \times 100 \ \mu L$
	clear white	Cap color A16517 clear 100 μL white 100 μL

Shipping and storage

CytoTune[®] 2.0 reprogramming vectors are **not** compatible with the reprogramming vectors from the original CytoTune[®]-iPS Reprogramming Kits (Cat. nos. A13780-01, A13780-02). Do **not** mix or substitute CytoTune[®] 2.0 reprogramming vectors with the reprogramming vectors from the original kits.

• CytoTune[®]-iPS 2.0 Sendai Reprogramming Kit is shipped on dry ice.

- Immediately upon receipt, store each component at -80°C.
- Avoid repeated freezing and thawing of your reprogramming vectors. Viral titer is not guaranteed for kits that have been refrozen or thawed.
- Use the kit by the expiration date specified on the Certificate of Analysis (CoA).

Product use

For Research Use Only. Not for use in diagnostic procedures.

This product must be used under Biosafety Level 2 (BL-2) containment with biological safety cabinet and laminar flow hood, and with appropriate personal safety equipment to prevent mucosal exposure/splash. For more information on BL-2 guidelines, see page 6.

Description of the System

Induced pluripotent stem cells (iPSC)	Induced pluripotent stem cells (iPSCs) are genetically reprogrammed adult cells which exhibit a pluripotent stem cell-like state similar to embryonic stem cells (Meissner <i>et al.</i> , 2007; Park <i>et al.</i> , 2008; Takahashi <i>et al.</i> , 2007; Takahashi & Yamanaka, 2006; Wernig <i>et al.</i> , 2007; Yu <i>et al.</i> , 2007). While these artificially generated cells are not known to exist in the human body, they show qualities remarkably similar to those of embryonic stem cells (ESC); thus, they are an invaluable new source of pluripotent cells for drug discovery, cell therapy, and basic research.
	There are multiple methods to generate iPSCs, including retrovirus-mediated gene transduction and chemical induction. While retroviral vectors require integration into host chromosomes to express reprogramming genes, DNA-based vectors such as adenovirus, adeno-associated virus, and plasmid vectors exist episomally and do not require integration; however, they may still be integrated into host chromosomes at certain frequencies. Unlike these vectors, the CytoTune [®] 2.0 reprogramming vectors do not integrate into the host genome or alter the genetic information of the host cell (Fusaki <i>et al.</i> , 2009; Li <i>et al.</i> , 2000; Seki <i>et al.</i> , 2010).
CytoTune [®] -iPS 2.0 Reprogramming System	CytoTune [®] -iPS 2.0 Reprogramming System uses vectors based on a modified, non-transmissible form of Sendai virus (SeV) to safely and effectively deliver and express key genetic factors necessary for reprogramming somatic cells into iPSCs. In contrast to many available protocols, which rely on viral vectors that integrate into the genome of the host cell, the CytoTune [®] -iPS 2.0 Reprogramming System uses vectors that are non-integrating and remain in the cytoplasm (i.e., they are zero-footprint). In addition, the host cell can be cleared of the vectors and reprogramming factor genes by exploiting the cytoplasmic nature of SeV and the functional temperature sensitivity mutations introduced into the key viral proteins. The CytoTune [®] -iPS 2.0 Sendai Reprogramming Kit contains three SeV-based reprogramming vectors, and are optimized for generating iPSCs from human somatic cells. The reprogramming vectors in this kit have been engineered to increase biological and environmental safety (see Safety Features of the System , page 6).

Description of the System, continued

Sendai virus (SeV)
 Sendai virus is a respiratory virus of mouse and rat, classified as mouse parainfluenza virus type I belonging to the *Paramyxoviridae* family. SeV was first isolated in Japan in the early 1950s (Kuroya *et al.*, 1953) and is also called Hemagglutinating Virus of Japan (HVJ). SeV is an enveloped virus of 150–250 nm in diameter whose genome is a single chain RNA (15,384 bases) in the minus sense. Six genes coding for viral proteins are situated sequentially on the genome of the wild-type SeV in the following order (starting from the 3' end):
 Nucleocapsid protein (NP) forms the core nucleocapsid complex with the

- Nucleocapsid protein (NP) forms the core nucleocapsid complex with the genome RNA.
- Phosphoprotein (P) is the small subunit of the RNA polymerase.
- Matrix protein (M) supports the envelope structure from the inside.
- Fusion protein (F) fuses the viral envelope with cell membrane when the virus enters the cell.
 Note: The gene encoding the F protein is deleted from the CytoTune[®] 2.0 reprogramming vectors, rendering them incapable of producing infectious particles from infected cells (see page 6).
- Hemagglutinin-Neuraminidase (HN) recognizes the cell surface receptor, sialic acid.
- Large protein (L) is the large subunit of RNA polymerase.

Because SeV infects cells by attaching itself to the sialic acid receptor present on the surface of many different cells, it can infect a wide range of cell types of various animal species. Activation of F protein by a protease is required for the virus-cell fusion process to take place. After infection, the virus goes through genome replication and protein synthesis, and then daughter virus particles are assembled and released.

Figure 1 Comparison of the lifecycles of non-integrating SeV vectors and other, integrating vectors

Description of the System, continued

CytoTune[®] 2.0 reprogramming vectors

The table below lists the CytoTune[®] 2.0 reprogramming vectors included in the CytoTune[®]-iPS 2.0 Sendai Reprogramming Kit. The reprogramming vectors include the four Yamanaka factors, Oct, Sox2, Klf4, and c-Myc, shown to be sufficient for efficient reprogramming (Takahashi *et al.*, 2007).

CytoTune [®] Sendai vector	Cap color	Factor	GenBank ID
CytoTune [®] 2.0 KOS	clear	Human Klf4 Human Oct3/4 Human Sox2	BC029923.1 NM_002701.4 NM_003106.2
CytoTune [®] 2.0 hc-Myc	white	Human c-Myc	K02276.1
CytoTune [®] 2.0 hKlf4	red	Human Klf4	BC029923.1

Advantages of CytoTune®-iPS 2.0 Sendai Reprogramming Kit	•	No genotoxicity: CytoTune [®] 2.0 Sendai reprogramming vectors do not integrate into chromosomes of the target cells and potentially disrupt important genes.
	•	Wide range of targets: CytoTune [®] 2.0 Sendai reprogramming vectors are capable of transducing a wide range of cell types in proliferative and quiescent states.
	•	High transduction efficiency with low multiplicity of infection (MOI).

- Short contact time of virus with target cells is sufficient to establish transduction.
- High level of expression of the transgenes.
- Fast expression of the transgenes: expression is detectable as early as 6–10 hours after transduction, with maximum expression detected more than 24 hours after transduction.
- Zero footprint: the vectors and transgenes can be eliminated from the cells.
- No production of infectious particles by the transduced cells.
- Derived from a virus that is non-pathogenic to humans.

Safety Features of the System

Sendai virus (SeV) safety information	Host species : The host species for the Sendai virus (SeV) reported so far are mouse, rat, hamster, and guinea pigs, all of which have been described to be serologically positive.
	Transmission : SeV is transmitted by aerosol and contact with respiratory secretions. The virus is highly contagious, but the infection does not persist in immunocompetent animals.
	CytoTune[®] 2.0 Sendai reprogramming vectors : CytoTune [®] 2.0 Sendai reprogramming vectors in this kit are based on a modified, non-transmissible form of SeV, which has the Fusion protein (F) deleted, rendering the virus incapable of producing infectious particles from infected cells.
	Inoculating animals with transduced cells : Although the CytoTune [®] 2.0 Sendai reprogramming vectors are non-transmissible, cells that have been exposed to the virus should be tested with PCR or antibody staining to ensure the absence of the virus before being inoculated into animals. Animals that have already been infected with wild type SeV may be able to make infectious CytoTune [®] -2.0 Sendai virus.
Non-transmissible CytoTune® 2.0 Sendai reprogramming vectors	SeV vectors used in this kit consist of viral proteins NP, P, M, F (activated), HN, and L, and the SeV genome RNA, from which the F gene is deleted. Because SeV infects cells by attaching itself to cell surface receptor sialic acid, present on the surface of many cell types of different species, the vectors are able to transduce a wide range of cells. However, they are no longer capable of producing infectious particles from infected cells, because the viral genome lacks the F-gene. In addition, the presence of functional mutations such as temperature sensitivity in the amino acid sequence of several SeV proteins (SeV/TS Δ F, SeV/TS12 Δ F, and SeV/TS15 Δ F) renders the vectors easily removable from transduced cells. Note: SeV vectors used in this kit were developed by DNAVEC Corporation (http://www.dnavec.co.jp) and their rights for commercial use are the property of DNAVEC Corporation.
Biosafety Level 2	Although human is not the natural host for the SeV, and the virus is non- pathogenic to humans, appropriate care must be taken to prevent the potential mucosal exposure to the virus. This product must be used under Biosafety Level 2 (BL-2) containment with biological safety cabinet and laminar flow hood, and with appropriate personal safety equipment to prevent mucosal exposure/splash. In the event that the virus comes into contact with skin or eves, decontaminate by

In the event that the virus comes into contact with skin or eyes, decontaminate by flushing with plenty of water and consult a physician. For more information on BL-2 guidelines, refer to *Biosafety in Microbiological and Biomedical Laboratories*, 5th ed., published by the Centers for Disease Control, which is available for downloading at: www.cdc.gov/od/ohs/biosfty/bmbl5/bmbl5toc.htm.

Before You Begin

Guidelines for Generating iPSCs

Experimental guidelines

- To maintain sterile culture conditions, carry out all of the procedures in this manual using sterile laboratory practices in a laminar flow hood.
- You can use the CytoTune[®]-iPS 2.0 Sendai Reprogramming Kit to reprogram a wide range of cell types in proliferative and quiescent states. However, the reprogramming efficiency may vary between different cell types (~0.01%–1%).
- For successful reprogramming, transduce your cells using all three reprogramming vectors.
 Note: For successful reprogramming, all four Yamanaka factors (i.e., Oct4, Sox2, Klf4, and c-Myc) need to be expressed in your host cell.
- Cells that have already been infected with Sendai virus are refractive to further infection by Sendai virus. Therefore, you cannot transduce cells with CytoTune[®] 2.0 reprogramming vectors that have already been transduced with other Sendai vectors such as the CytoTune[®]-EmGFP Sendai Fluorescence Reporter or vice versa.
- One CytoTune[®]-iPS 2.0 Reprogramming Kit of three tubes supplies sufficient reagents to transduce a minimum of 1.5 × 10⁶ cells at MOI=5-5-3 (i.e., KOS MOI=5, hc-Myc MOI=5, hKlf4 MOI=3).
- The titer of each CytoTune[®] 2.0 Sendai reprogramming vector is lot-dependent. For the specific titer of your vectors, refer to the Certificate of Analysis (CoA) available on our website. Go to **www.lifetechnologies.com/cytotunegfp** and search for the CoA by product lot number, which is printed on the vial.
- Viral titers can decrease dramatically with each freeze/thaw cycle. Avoid repeated freezing and thawing of your reprogramming vectors. Viral titer is not guaranteed for kits that have been refrozen or thawed.
- Prior to starting, ensure that the media are equilibrated to 37°C and appropriately gassed.

CytoTune[®] 2.0 reprogramming vectors are **not** compatible with the reprogramming vectors from the original CytoTune[®]-iPS Reprogramming Kits (Cat. nos. A13780-01, A13780-02). Do **not** mix or substitute CytoTune[®] 2.0 reprogramming vectors with the reprogramming vectors from the original kits.

Positive control

For positive control, we recommend performing a reprogramming experiment with human neonatal foreskin fibroblast cells (strain BJ; ATCC no. CRL2522). Note that experimental conditions may vary among target cells and need to be optimized for each cell type. The example given in the following protocol does not guarantee the generation of iPSCs for all cell types.

Guidelines for Generating iPSCs, continued

CytoTune®-EmGFP Sendai Fluorescence Reporter	The CytoTune [®] -EmGFP Sendai Fluorescence Reporter (Cat. no. A16519), available separately from Life Technologies, is a fluorescent control vector carrying the Emerald Green Fluorescent Protein (EmGFP) gene. The fluorescent control vector allows you to determine whether your cell line of interest is amenable or refractive to transduction by the Sendai reprogramming vectors, including the vectors from the original CytoTune [®] -iPS Sendai Reprogramming Kits. We recommend testing your cell lines of interest using the CytoTune [®] -EmGFP Sendai Fluorescence Reporter before starting your reprogramming experiments.
	Note that you cannot transduce cells with CytoTune [®] reprogramming vectors that have already been transduced with the CytoTune [®] -EmGFP Sendai Fluorescence Reporter or vice versa. If you wish to use the CytoTune [®] -EmGFP Sendai Fluorescence Reporter during reprogramming, you must add it to the cells at the same time as the reprogramming vectors. For detailed instructions on using the CytoTune [®] -EmGFP Sendai Fluorescence Reporter, see page 48.

Reprogramming Fibroblasts

Experiment Outline (Feeder-Dependent)

The major steps required for reprogramming human neonatal foreskin fibroblast Workflow cells using the CytoTune[®]-iPS 2.0 Sendai Reprogramming Kit to generate iPSCs cultured on MEF feeder-cells are shown below. Note that the timeline is provided as a guideline for experimental planning; actual timeline can vary based on the cell type and experimental conditions. Plate transduced cells Perform transduction on MEF culture dishes Replace spent Plate Change Switch to iPSC Emerging iPSC colonies ready for transfer medium cells medium medium colonies ł Day: -2 0 1 2 4 6 7 8 10 12 3-4 weeks Fibroblast Medium iPSC Medium **iMEF** Feeder Cells Day –2: Plate human fibroblasts with a passage number of 5 or lower into at least Reprogramming two wells of a 6-well plate in fibroblast medium so that they are 50-80% confluent timeline on the day of transduction (Day 0). Note: The kit supplies sufficient virus to transduce cells in at least 5 wells of a 6-well plate. Day 0: Transduce the cells using the CytoTune[®] 2.0 Sendai reprogramming vectors at the appropriate MOI. Incubate the cells overnight. Day 1: Replace the medium with fresh complete fibroblast medium to remove the CytoTune[®] 2.0 Sendai reprogramming vectors. **Day 2–6:** Replace the spent medium every other day. Day 5 or 6: Prepare MEF culture dishes. Day 7: Plate transduced cells on MEF culture dishes in fibroblast medium. Day 8: Change the medium to iPSC medium. Day 9-28: Replace spent medium every day and monitor the culture vessels for the emergence of iPSC colonies. When iPSC colonies are ready for transfer, perform live staining, and pick and transfer undifferentiated iPSCs onto fresh MEF culture dishes for expansion. For optimal reprogramming of human neonatal foreskin fibroblast cells using the Media for CytoTune®-iPS 2.0 Sendai Reprogramming Kit to generate iPSCs cultured on reprogramming MEF feeder-cells, use the following media at the designated stages of the fibroblasts reprogramming experiment: (feeder-dependent) Fibroblast medium (page 39): Plating cells prior to transduction, expansion, post-transduction recovery of cells, plating of transduced cells on MEF culture dishes **iPSC medium** (page 40): Expansion of transduced cells on MEF culture dishes, live staining and picking of iPSCs

Reprogramming Fibroblasts (Feeder-Dependent)

Materials needed	Cells and vectors			
	 CytoTune[®] 2.0 Sendai reprogramming vectors Note: For successful reprogramming, you need all three tubes of reprogramming vectors. 			
	Human fibroblast cells to reprogram			
	• <i>Optional</i> : Human neonatal foreskin fibroblast cells (strain BJ; ATCC no. CRL2522) as a positive reprogramming control			
	Gibco [®] Mouse Embryonic Fibroblasts (Irradiated) (Cat. no. S1520-100)			
	Media and reagents			
	• DMEM with GlutaMAX [™] -I (high glucose) (Cat. no. 10569-010)			
	• KnockOut [™] DMEM/F-12 (Cat. no. 12660-012)			
	• Fetal Bovine Serum (FBS), ES Cell-Qualified (Cat. no. 16141-079)			
	• KnockOut [™] Serum Replacement (KSR) (Cat. no. 10828-028)			
	• MEM Non-essential Amino Acids (NEAA) (Cat. no. 11140-050)			
	• GlutaMAX [™] -I Supplement (Cat. no. 35050-061)			
	• Basic FGF, recombinant human (Cat. no. PHG0264)			
	• β-mercaptoethanol (Cat. no. 21985-023)			
	Optional: Penicillin-Streptomycin, liquid (Cat. no. 15140-122)			
	• Attachment Factor (Cat. no. S-006-100)			
	 TrypLE[™] Select Cell Dissociation Reagent (Cat. no. 12563) or 0.05% Trypsin/EDTA (Cat. no. 25300) 			
	• Dulbecco's PBS (DPBS) without Calcium and Magnesium (Cat. no. 14190)			
	CytoTune [®] 2.0 reprogramming vectors are not compatible with the reprogramming vectors from the original CytoTune [®] -iPS Reprogramming Kits (Cat. nos. A13780-01, A13780-02). Do not mix or substitute CytoTune [®] 2.0 reprogramming vectors with the reprogramming vectors from the original kits.			

Reprogramming Fibroblasts (Feeder-Dependent), continued

Reprogramming protocol	The following protocol has been optimized to transduce one well of human neonatal foreskin fibroblast cells (strain BJ; ATCC no. CRL2522), as a positive control. We recommend that you optimize the protocol for your cell type, and add an appropriate number of conditions/wells to utilize the entire volume of virus.				
	Day –2: Prepare the cells for transduction				
	-	Two days before transduction, plate human neonatal foreskin fibroblast cells onto at least two wells of a 6-well plate at the appropriate density to achieve between 2×10^5 – 3×10^5 cells per well on the day of transduction (Day 0). One of the wells will be used to count cells for viral volume calculations. Note: Each CytoTune [®] -iPS 2.0 Sendai Reprogramming Kit supplies sufficient virus to transduce cells in at least 5 wells of a 6-well plate. We recommend using the entire volume of virus.			
		Note: We recommend about 50–80% confluency on the day of transduction. Because overconfluency results in decreased transduction efficiency, we recommend replating your cells to achieve 50–80% confluency if your cells have become overconfluent during culturing.			
	2.	Culture the cells for two more days, ensuring the cells have fully adhered and extended.			
	Day 0: Perform transduction				
	3.	On the day of transduction, warm 1 mL of fibroblast medium in a water bath (see page 39 for recipe) for each well to be transduced.			
	4.	Harvest the cells from one well to perform a cell count. These cells will not be transduced , but will be used to estimate the cell number in the other well(s) plated in Step 1.			
	5.	Remove the cells from this well using 0.5 mL of TrypLE [™] Select reagent or 0.05% trypsin/EDTA following the procedure recommended by the manufacturer and incubating at room temperature. When the cells have rounded up (1–3 minutes later), add 1 mL of fibroblast medium into each well, and collect the cells in a 15-mL conical centrifuge tube.			
	6.	Count the cells using the desired method (e.g., Countess [®] Automated Cell Counter), and calculate the volume of each virus needed to reach the target MOI using the live cell count and the titer information on the CoA.			
		Volume of virus (µL) = MOI (CIU/cell) × number of cells titer of virus (CIU/mL) × 10 ⁻³ (µL/mL)			
		Note: We recommend initially performing the transductions with MOIs of 5, 5, and 3 (i.e., KOS MOI=5, hc-Myc MOI=5, hKlf4 MOI=3). These MOIs can be optimized for your application.			
		Note: The titer of each CytoTune [®] 2.0 reprogramming vector is lot-dependent. For the specific titer of your vectors, go to www.lifetechnologies.com/cytotunegfp and search for the CoA by product lot number, which is printed on the vial. Avoid re-freezing and thawing of the reprogramming vectors since viral titers can decrease dramatically with each freeze/thaw cycle.			
		Continued on next page			

Reprogramming Fibroblasts (Feeder-Dependent), continued

Reprogramming protocol, continued	7.	Remove one set of CytoTune [®] 2.0 Sendai tubes from the -80°C storage. Thaw each tube one at a time by first immersing the bottom of the tube in a 37°C water bath for 5–10 seconds, and then removing the tube from the water bath and allowing it to thaw at room temperature. Once thawed, briefly centrifuge the tube and place it immediately on ice.
	8.	Add the calculated volumes of each of the three CytoTune [®] 2.0 Sendai tubes to 1 mL of fibroblast medium, pre-warmed to 37°C. Ensure that the solution is thoroughly mixed by pipetting the mixture gently up and down. Complete the next step within 5 minutes.
	9.	Aspirate the fibroblast medium from the cells, and add the reprogramming virus mixture prepared in Step 8 to the well containing the cells. Incubate the cells overnight in a 37° C incubator with a humidified atmosphere of 5% CO ₂ .
	Da	y 1: Replace medium and culture cells
	10.	24 hours after transduction, replace the medium with fresh fibroblast medium.
11.		Note: Depending on your cell type, you should expect to see some cytotoxicity 24–48 hours post-transduction, which can affect >50% of your cells. This is an indication of high uptake of the virus. We recommend that you continue culturing your cells and proceed with the protocol.
	11.	Culture the cells for 6 more days, changing the spent medium with fresh fibroblast medium every other day.
		Note: Depending on your cell type, you may observe high cell density before Day 5. We do not recommend passaging your cells onto MEF culture dishes before 7 days post-transduction. You may replace spent medium daily with fresh fibroblast medium if cultures become very dense.
	Da	y 5 or 6: Prepare MEF culture dishes
	12.	One to two days before passaging the transduced fibroblasts onto MEF feeder-cells, prepare 100-mm MEF culture dishes (see page 43).
	Da	y 7: Plate transduced cells on MEF culture dishes
	13.	Seven days after transduction (Step 6, page 11), fibroblast cells are ready to be harvested and plated on MEF culture dishes. Remove the medium from the fibroblasts, and wash cells once with D-PBS.
	14.	To remove the cells from the 6-well plate, use 0.5 mL of TrypLE [™] Select reagent or 0.05% trypsin/EDTA following the procedure recommended by the manufacturer and incubate at room temperature. When the cells have rounded up (1–3 minutes later), add 2 mL of fibroblast medium into each well, and collect the cells in a 15-mL conical centrifuge tube. Note: Because the cells can be very sensitive to trypsin at this point, minimize trypsin exposure time and incubate the cells at room temperature.
	15	Centrifuge the cells at 200 x g for 4 minutes aspirate the medium and

15. Centrifuge the cells at $200 \times g$ for 4 minutes, aspirate the medium, and re-suspend the cells in an appropriate amount of fibroblast medium.

Reprogramming Fibroblasts (Feeder-Dependent), continued

Reprogramming protocol, continued	 6. Count the cells using the desired method (e.g., Countess[®] Automated Cell Counter), and seed the MEF culture dishes with 5 × 10⁴-2 × 10⁵ cells per 100-mm dish and incubate overnight in a 37°C incubator with a humidified atmosphere of 5% CO₂. Note: We recommend plating 5 × 10⁴, 1 × 10⁵, and 2 × 10⁵ cells per 100-mm dish. Depending on your cell type, you may need to plate most of your cells on the same plate to ensure sufficient numbers of colonies. Note: Set aside any remaining cells for RNA extraction to be used as a positive control in the RT-PCR detection of the SeV genome (see page 36).
	Day 8 to 28: Feed and monitor the cells
	7. 24 hours later, change the medium to iPSC medium (see page 40 for recipe), and replace the spent medium every day thereafter.
	8. Starting on Day 8, observe the plates every other day under a microscope for the emergence of cell clumps indicative of reprogrammed cells (see Visual identification , page 31).
	Note: For BJ fibroblasts, we normally observe colony formation on Day 12 post- transduction. However, depending on your cell type, you may need to culture for up to 4 weeks before seeing colonies.
	9. Three to four weeks after transduction, colonies should have grown to an appropriate size for transfer. The day before transferring the colonies, prepare MEF culture plates using Attachment Factor-coated 12- or 24-well plates.
	Note: We typically harvest colonies closer to three weeks to avoid differentiation.
	0. When colonies are ready for transfer, perform live staining using Tra1-60 or Tra1-81 for selecting reprogrammed colonies (see Live Staining , page 32).
	 Manually pick colonies and transfer them onto MEF plates (see Picking iPSC Colonies, page 34).

Experiment Outline (Feeder-Free)

Workflow

The major steps required for reprogramming human neonatal foreskin fibroblast cells using the CytoTune[®]-iPS 2.0 Sendai Reprogramming Kit to generate iPSCs cultured feeder-free on vitronectin-coated culture dishes are shown below. Note that the timeline is provided as a guideline for experimental planning; actual timeline can vary based on the cell type and experimental conditions.

Reprogramming timeline	 Day -2: Plate human fibroblasts into at least two wells of a 6-well plate in fibroblast medium so that they are 50–80% confluent on the day of transduction (Day 0). Note: The kit supplies sufficient virus to transduce cells in at least 5 wells of a 6-well plate. Day 0: Transduce the cells using the CytoTune[®] 2.0 Sendai reprogramming vectors at the appropriate MOI. Incubate the cells overnight. 				
	Day 1: Replace the medium with fresh complete fibroblast medium to remove the CytoTune [®] 2.0 Sendai reprogramming vectors.				
	Day 2-6: Replace the spent medium every other day.				
	Day 7: Plate transduced cells on vitronectin-coated culture dishes in fibroblast medium.				
	Day 8: Change the medium to complete Essential 8^{TM} Medium.				
	Day 9–28: Replace spent medium every day and monitor the culture vessels for the emergence of iPSC colonies. When iPSC colonies are ready for transfer, perform live staining, and pick and transfer undifferentiated iPSCs onto fresh culture dishes for expansion.				
Media for reprogramming fibroblasts (feeder-free)	For optimal reprogramming of human neonatal foreskin fibroblast cells using the CytoTune [®] -iPS 2.0 Sendai Reprogramming Kit to generate iPSCs cultured feeder free on vitronectin-coated culture dishes, use the following media at the designated stages of the reprogramming experiment:				
	• Fibroblast medium (page 39): Plating cells prior to transduction, expansion, post-transduction recovery of cells, plating of transduced cells on vitronectin-coated culture dishes				
	• Complete Essential 8[™] Medium (page 40): Expansion of transduced cells on vitronectin-coated culture dishes, live staining and picking of iPSCs				

Reprogramming Fibroblasts (Feeder-Free)

Materials needed	Cells and vectors				
	CytoTune [®] 2.0 Sendai reprogramming vectors				
	Note: For successful reprogramming, you need all three tubes of reprogramming vectors.				
	Human fibroblast cells to reprogram				
	 Optional: Human neonatal foreskin fibroblast cells (strain BJ; ATCC no. CRL2522) as a positive reprogramming control 				
	Gibco [®] Mouse Embryonic Fibroblasts (Irradiated) (Cat. no. S1520-100)				
	Media and reagents				
	• DMEM with GlutaMAX [™] -I (high glucose) (Cat. no. 10569-010)				
	• KnockOut [™] DMEM/F-12 (Cat. no. 12660-012)				
	• Fetal Bovine Serum (FBS), ES Cell-Qualified (Cat. no. 16141-079)				
	• KnockOut [™] Serum Replacement (KSR) (Cat. no. 10828-028)				
	• MEM Non-essential Amino Acids (NEAA) (Cat. no. 11140-050)				
	• GlutaMAX [™] -I Supplement (Cat. no. 35050-061)				
	• Basic FGF, recombinant human (Cat. no. PHG0264)				
	• β-mercaptoethanol, 55 mM (Cat. no. 21985-023)				
	Optional: Penicillin-Streptomycin, liquid (Cat. no. 15140-122)				
	Attachment Factor (Cat. no. S-006-100)				
	 TrypLE[™] Select Cell Dissociation Reagent (Cat. no. 12563) or 0.05% Trypsin/EDTA (Cat. no. 25300) 				
	• Dulbecco's PBS (DPBS) without Calcium and Magnesium (Cat. no. 14190)				
	• Essential 8 [™] Medium (Cat. no. A1517001)				
	• Vitronectin, truncated recombinant human (VTN-N) (Cat. no. A14700)				
	CytoTune [®] 2.0 reprogramming vectors are not compatible with the reprogramming vectors from the original CytoTune [®] -iPS Reprogramming Kits (Cat. nos. A13780-01, A13780-02). Do not mix or substitute CytoTune [®] 2.0 reprogramming vectors with				

ng 01, the reprogramming vectors from the original kits.

Reprogramming Fibroblasts (Feeder-Free), continued

Reprogramming protocol		e following protocol has been optimized to transduce one well of human		
	cor	onatal foreskin fibroblast cells (strain BJ; ATCC no. CRL2522), as a positive atrol. We recommend that you optimize the protocol for your cell type, and d an appropriate number of conditions/wells to utilize the entire volume of us.		
	Day –2: Prepare the cells for transduction			
	1.	Two days before transduction, plate human neonatal foreskin fibroblast cells onto at least two wells of a 6-well plate at the appropriate density to achieve between 2×10^5 – 3×10^5 cells per well on the day of transduction (Day 0). One of the wells will be used to count cells for viral volume calculations. Note: Each CytoTune [®] -iPS 2.0 Sendai Reprogramming Kit supplies sufficient virus to transduce cells in at least 5 wells of a 6-well plate. We recommend using the entire volume of virus.		
		Note: We recommend about 50–80% confluency on the day of transduction. Because overconfluency results in decreased transduction efficiency, we recommend replating your cells to achieve 50–80% confluency if your cells have become overconfluent during culturing.		
	2.	Culture the cells for two more days, ensuring the cells have fully adhered and extended.		
	Day 0: Perform transduction			
	3.	On the day of transduction, warm 1 mL of fibroblast medium in a water bath (see page 39 for recipe) for each well to be transduced.		
	4.	Harvest the cells from one well to perform a cell count. These cells will not be transduced , but will be used to estimate the cell number in the other well(s) plated in Step 1.		
	5.	Remove the cells from the 6-well plate using 0.5 mL of TrypLE [™] Select reagent or 0.05% trypsin/EDTA following the procedure recommended by the manufacturer and incubating at room temperature. When the cells have rounded up (1–3 minutes later), add 1 mL of fibroblast medium into each well, and collect the cells in a 15-mL conical centrifuge tube.		
	6.	Count the cells using the desired method (e.g., Countess [®] Automated Cell Counter), and calculate the volume of each virus needed to reach the target MOI using the live cell count and the titer information on the CoA.		
		Volume of virus (µL) = MOI (CIU/cell) × number of cells titer of virus (CIU/mL) × 10 ⁻³ (µL/mL)		
		Note: We recommend initially performing the transductions with MOIs of 5, 5, and 3 (i.e., KOS MOI=5, hc-Myc MOI=5, hKlf4 MOI=3). These MOIs can be optimized for your application. Note: The titer of each CytoTune [®] 2.0 reprogramming vector is lot-dependent. For the specific titer of your vectors, go to www.lifetechnologies.com/cytotunegfp and search for the CoA by product lot number, which is printed on the vial. Avoid re-freezing and thawing of the reprogramming vectors since viral titers can decrease dramatically with each freeze/thaw cycle.		

Reprogramming Fibroblasts (Feeder-Free), continued

Reprogramming protocol, continued	7.	Remove one set of CytoTune [®] 2.0 Sendai tubes from the -80°C storage. Thaw each tube one at a time by first immersing the bottom of the tube in a 37°C water bath for 5–10 seconds, and then removing the tube from the water bath and allowing it to thaw at room temperature. Once thawed, briefly centrifuge the tube and place it immediately on ice.			
	8.	Add the calculated volumes of each of the three CytoTune [®] 2.0 Sendai tubes to 1 mL of fibroblast medium, pre-warmed to 37°C. Ensure that the solution is thoroughly mixed by pipetting the mixture gently up and down. Complete the next step within 5 minutes.			
	9.	Aspirate the fibroblast medium from the cells, and add the reprogramming virus mixture prepared in Step 8 to the well containing the cells. Incubate the cells overnight in a 37°C incubator with a humidified atmosphere of 5% CO_2 .			
	Day	y 1: Replace medium and culture cells			
	10.	24 hours after transduction, replace the medium with fresh fibroblast medium.			
		Note: Depending on your cell type, you should expect to see some cytotoxicity 24–48 hours post-transduction, which can affect >50% of your cells. This is an indication of high uptake of the virus. We recommend that you continue culturing your cells and proceed with the protocol.			
	11.	Culture the cells for 6 more days, changing the spent medium with fresh fibroblast medium every other day.			
		Note: Depending on your cell type, you may observe high cell density before Day 5. We do not recommend passaging your cells before 7 days post-transduction. You may replace spent medium daily with fresh fibroblast medium if cultures become very dense.			
	Day 7: Plate transduced cells on vitronectin-coated culture dishes				
	12.	Coat a sufficient number of tissue culture dishes (e.g. 6-well, 60-mm, or 100-mm) with vitronectin (see page 45 for coating protocol). Note: Geltrex [®] Membrane Matrix can be substituted for vitronectin; see page 45 for coating protocol.			
	13.	Seven days after transduction (Step 9, above), fibroblast cells are ready to be harvested and plated on vitronectin-coated culture dishes. Remove the medium from the fibroblasts, and wash cells once with D-PBS.			
	14.	To remove the cells from the 6-well plate, use 0.5 mL of TrypLE [™] Select reagent or 0.05% trypsin/EDTA following the procedure recommended by the manufacturer and incubate at room temperature. When the cells have rounded up (1–3 minutes later), add 2 mL of fibroblast medium into each well, and collect the cells in a 15-mL conical centrifuge tube.			
	4 -	Note: Because the cells can be very sensitive to trypsin at this point, minimize trypsin exposure time and incubate the cells at room temperature.			
	15.	Centrifuge the cells at $200 \times g$ for 4 minutes, aspirate the medium, and			

5. Centrifuge the cells at $200 \times g$ for 4 minutes, aspirate the medium, and re-suspend the cells in an appropriate amount of fibroblast medium.

Reprogramming Fibroblasts (Feeder-Free), continued

Reprogramming protocol, continued	16.	Count the cells using the desired method (e.g., Countess [®] Automated Cell Counter), and seed the vitronectin-coated culture dishes with $1 \times 10^5-5 \times 10^5$ cells per 100-mm dish and incubate overnight in a 37°C incubator with a humidified atmosphere of 5% CO ₂ . Note: Reprogramming efficiencies will typically be lower when using feeder-free conditions, so the number of cells plated should be increased accordingly. We recommend plating at least two different densities (e.g. 1×10^5 and 5×10^5 cells per 100-mm dish). Plating can also be scaled down to a 60-mm dish or 6-well plates. Depending on your cell type, you may need to plate most of your cells on the same plate to ensure sufficient numbers of colonies. Note: Set aside any remaining cells for RNA extraction to be used as a positive control in the RT-PCR detection of the SeV genome.
	Day	/ 8 to 28: Feed and monitor the cells
	17.	24 hours later, change the medium to complete Essential 8^{TM} Medium (see page 40), and replace the spent medium every day thereafter.
	18.	Starting on Day 8, observe the plates every other day under a microscope for the emergence of cell clumps indicative of reprogrammed cells. Note: For BJ fibroblasts, we normally observe colony formation on Day 12 post-transduction. However, depending on your cell type, you may need to culture for up to 4 weeks before seeing colonies.
	19.	Three to four weeks after transduction, colonies should have grown to an appropriate size for transfer. When the colonies are ready for transfer, perform live staining using Tra1-60 or Tra1-81 for selecting reprogrammed colonies (see Live Staining , page 32). Note: We typically harvest colonies closer to three weeks to avoid differentiation.
	20.	Manually pick undifferentiated iPSC colonies (see Picking iPSC Colonies , page 34) and transfer them onto vitronectin-coated culture dishes for further expansion or analysis.

Reprogramming PBMCs

Experiment Outline

Continued on next page

undifferentiated iPSCs onto fresh MEF culture dishes for expansion.

Reprogramming Peripheral Blood Mononuclear Cells (PBMCs)

Media for reprogramming PBMCs (feeder-dependent)	 For optimal reprogramming of PBMCs using the CytoTune[®]-iPS 2.0 Sendai Reprogramming Kit to generate iPSCs cultured on MEF feeder-cells, use the following media at the designated stages of the reprogramming experiment: PBMC medium (page 39): Plating cells prior to transduction, expansion, post-transduction recovery of cells StemPro[®]-34 medium without cytokines (page 41): Plating of transduced 				
	 cells on MEF culture dishes iPSC medium (page 40): Expansion of transduced cells on MEF culture dishes, live staining and picking of iPSCs 				
Materials needed	Cells and vectors				
Materials needed	 CytoTune[®] 2.0 Sendai reprogramming vectors 				
	Note: For successful reprogramming, you need all three tubes of reprogramming vectors				
	Peripheral blood mononuclear cells (PBMCs) to reprogram				
	Note: You can use PBMCs extracted from blood by a conventional method (i.e., Ficoll-Paque purification) or frozen PBMCs.				
	• <i>Optional</i> : Human neonatal foreskin fibroblast cells (strain BJ; ATCC no. CRL2522) as a positive reprogramming control				
	Note: If you are using this as a control, follow the protocol for reprogramming fibroblasts within this manual (page 10).				
	Gibco [®] Mouse Embryonic Fibroblasts (Irradiated) (Cat. no. S1520-100)				
	Media and reagents				
	• StemPro [®] -34 SFM Medium (Cat. no. 10639-011)				
	• L-Glutamine (Cat. no. 25030)				
	• DMEM with GlutaMAX [™] -I (High Glucose) (Cat. no. 10569-010)				
	• KnockOut [™] DMEM/F-12 (Cat. no. 12660-012)				
	• Fetal Bovine Serum (FBS), ES Cell-Qualified (Cat. no. 16141-079)				
	• KnockOut [™] Serum Replacement (KSR) (Cat. no. 10828-028)				
	• MEM Non-Essential Amino Acids (NEAA) (Cat. no. 11140-050)				
	• GlutaMAX [™] -I Supplement (Cat. no. 35050-061				
	Basic FGF, Recombinant Human (Cat. no. PHG0264)				
	• SCF (C-Kit Ligand), Recombinant Human (Cat. no. PHC2111)				
	• FLT-3 Ligand, Recombinant Human (Cat. no. PHC9414)				
	• IL-3, Recombinant Human (Cat. no. PHC 0034)				
	• IL-6, Recombinant Human (Cat. no. PHC0065)				
	• β-Mercaptoethanol, 55 mM (Cat. no. 21985-023)				
	Optional: Penicillin-Streptomycin, Liquid (Cat. no. 15140-122)				
	 Optional: Polybrene Hexadimethrine Bromide (Sigma, Cat. no. H9268) 				
	 Attachment Factor (Cat. no. S-006-100) 				
	 Dulbecco's PBS (DPBS) without Calcium and Magnesium (Cat. no. 14190) 				
	Continued on next nage				

CytoTune[®] 2.0 reprogramming vectors are not compatible with the reprogramming vectors from the original CytoTune[®]-iPS Reprogramming Kits (Cat. nos. A13780-01, A13780-02). Do **not** mix or substitute CytoTune[®] 2.0 reprogramming vectors with the reprogramming vectors from the original kits.

Reprogramming protocol

The following protocol has been optimized for peripheral blood mononuclear cells (PBMCs) isolated through density gradient centrifugation via Ficoll-Paque and frozen in FBS and DMSO-containing medium. We recommend that you optimize the protocol for your cell type.

Day -4: Seed PBMCs

- 1. Four days before transduction, remove vial(s) of PBMCs from liquid nitrogen storage. Thaw the vial quickly in 37°C water bath. When only a small ice crystal remains in the vial, remove it from the water bath. Spray the outside of the vial with 70% ethanol before placing it in the cell culture hood.
- Gently transfer the PBMCs into a 15-mL conical tube. Slowly (drop-wise) add 5–10 mL pre-warmed complete PBMC medium (see page 41 for recipe) to the cell suspension. Remove an aliquot of cells to count and determine cell viability.

Note: PBMC medium consists of complete StemPro[®]-34 medium containing the appropriate cytokines; aliquot the cytokines and add fresh daily.

- 3. Centrifuge the cell suspension at $200 \times g$ for 10 minutes, discard the supernatant, and resuspend the cells in complete PBMC medium to 5×10^5 cells/mL.
- 4. Add 1 mL per well to the middle section of a 24-well plate to prevent excessive evaporation of the medium during incubation.
- 5. Incubate the cells in a 37°C incubator with a humidified atmosphere of 5% CO₂.

Day -3 to -1: Observe cells and add fresh medium

6. Count the cells daily, gently remove 0.5 mL of the medium from each well, and replace it with 0.5 mL of fresh complete PBMC medium, trying not to disturb the cells. If cells are present in 0.5 mL removed from the wells, centrifuge the cell suspension at $200 \times g$ for 10 minutes, discard the supernatant, and resuspend the cells in 0.5 mL fresh PBMC medium before adding them back to the plate.

Note: Some cell death is generally observed the first day after the thaw. Some cells may adhere to the surface of the tissue culture plate. Proceed with the cells in suspension. Cells will not proliferate, but should maintain stable cell number for the first few days (PBMCs contain a variety of cells, and the current media system is only targeting a small population).

Reprogramming Day 0: Count cells and perform transduction protocol, continued 7. Count the cells using the desired method (e.g., Countess® Automated Cell Counter), and calculate the volume of each virus needed to reach the target MOI using the live cell count and the titer information on the CoA. Volume of virus (μ L) = $\frac{MOI (CIU/cell) \times number of cells}{titer of virus (CIU/mL) \times 10^{-3} (<math>\mu$ L/mL)} Note: We recommend initially performing the transductions with MOIs of 5, 5, and 3 (i.e., KOS MOI=5, hc-Myc MOI=5, hKlf4 MOI=3). These MOIs can be optimized for your application. Note: The titer of each CytoTune® 2.0 reprogramming vector is lot-dependent. For the specific titer of your vectors, go to www.lifetechnologies.com/cytotunegfp and search for the CoA by product lot number, which is printed on the vial. Avoid re-freezing and thawing of the reprogramming vectors since viral titers can decrease dramatically with each freeze/thaw cycle. 8. Harvest the cells and seed the wells of a 12-well plate with 2.5×10^{5} – 5×10^{5} cells/well for transduction. 9. Remove CytoTune[®] 2.0 Sendai tubes from the -80°C storage. Thaw each tube one at a time by first immersing the bottom of the tube in a 37°C water bath for 5–10 seconds, and then removing the tube from the water bath and allowing it to thaw at room temperature. Once thawed, briefly centrifuge the tube and place it immediately on ice. 10. Add the calculated volumes of each of the three CytoTune[™] 2.0 Sendai tubes to 1 mL of PBMC medium, pre-warmed to 37°C. Ensure that the solution is thoroughly mixed by pipetting the mixture gently up and down. Complete the next step within 5 minutes. 11. Seal the edges of the plate with Parafilm[®] laboratory film and centrifuge at 2250 rpm for 90 minutes at room temperature. Add an additional 1 mL of complete PBMC medium to each well and incubate the plate overnight at 37°C in a humidified atmosphere of 5% CO₂. Note: If preferred, this centrifugation step can be performed in sterile, round-bottom culture tubes rather than in the 12-well plate. Transfer the cells and the medium containing the virus to a 12-well plate in a total volume of 2 mL for overnight incubation after centrifugation.

Note: Although this centrifugation step is not required, it increases the transduction and reprogramming efficiencies. If the centrifugation step is omitted, transductions can be performed in a 24-well plate using 0.3 mL of total volume of cells, virus, and medium. Adding 4 μ g/mL of Polybrene to the medium at the time of transduction may increase transduction efficiencies if the centrifugation step is not performed.

Day 1: Replace medium and culture cells

12. The next day, remove the cells and medium from the culture plate and transfer to a 15-mL centrifuge tube. Rinse the well gently with 1 mL of medium to ensure most of the cells are harvested.

Reprogramming protocol, continued	13.	Remove the CytoTune [®] 2.0 Sendai viruses by centrifuging the cell suspension at $200 \times g$ for 10 minutes, aspirating the supernatant, and resuspending the cells in 0.5 mL of complete PBMC medium per well of a 24-well plate. Note: The cells may have drastic cell death (>60%); continue with the protocol using the live cell count. For the first 48 hours, observe the cells under the microscope for changes in cell morphology as a validation of transduction. Expect large, aggregated cells.
	14.	Culture the cells at 37°C in a humidified atmosphere of 5% CO_2 for 2 days. Note: While the cells are incubating (1–2 days before plating the transduced cells), prepare MEF culture plates. You will need to have MEF feeder cells in at least two wells of a 6-well plate for each well of transduced cells (see page 43).
	Day	y 3: Plate cells on MEF culture dishes
	15.	Count the cells using the desired method (e.g., Countess [®] Automated Cell Counter) and seed the 6-well MEF culture plates with 10,000 and 50,000 live PBMCs per well in 2 mL of complete StemPro [®] -34 medium without the cytokines. Plate any excess cells in an additional MEF culture dish or harvest for extracting RNA to be used as a positive control in the RT-PCR detection of the SeV genome (see page 36).
	16.	Incubate the cells at 37° C in a humidified atmosphere of 5% CO ₂ .
	Day	y 4–6: Replace spent medium
	17.	Every other day, gently remove 1 mL (half) of the spent medium from the cells and replace it with 1 mL of fresh complete StemPro [®] -34 medium without cytokines and without disturbing cells.
	Day	y 7: Start transitioning cells to iPSC medium
	18.	Prepare 100 mL of complete iPSC medium as described on page 40.

19. Remove 1 mL (half) of StemPro[®]-34 medium from the cells and replace it with 1 mL of iPSC medium to start the adaptation of the cells to the new culture medium.

Day 8 to 28: Feed and monitor the cells

- 20. 24 hours later (day 8), change the full volume of the medium to iPSC medium, and replace the spent medium every day thereafter.
- 21. Starting on day 8, observe the plates every other day under a microscope for the emergence of cell clumps indicative of reprogrammed cells (see Figure 2, page 24).
- 22. By day 15 to 21 after transduction, colonies should have grown to an appropriate size for transfer. The day before transferring the colonies, prepare MEF culture plates using Attachment Factor-coated 12- or 24-well plates (see page 43). **Note:** We typically harvest colonies closer to 3 weeks to avoid differentiation.
- 23. When colonies are ready for transfer, perform live staining using Tra1-60 or Tra1-81 for selecting reprogrammed colonies if desired (see **Live Staining**, page 32).
- 24. Manually pick colonies and transfer them onto prepared MEF plates (see **Picking iPSC Colonies**, page 34).

Expected resultsFigure 2 Colony formation for iPSC generated from PBMC. Cells are cultured in complete
PBMC medium (complete StemPro®-34 SFM + cytokines) for 4 days. On day 0 (panel A) cells
are transduced overnight at an MOI of 5-5-3 (KOS MOI=5, hc-Myc MOI=5, hKlf4 MOI=3). At day
3 (panel B), the cells show morphological changes indicating reprogramming and are plated
on MEF feeder layers. The cells are allowed to proliferate on MEF feeder layers and colony
formation is observed from day 8 (panel C) to day 14 (panel D).

Reprogramming CD34⁺ Cells

Experiment Outline

Media for reprogramming StemPro [®] CD34 ⁺ cells (feeder-dependent)	For optimal reprogramming of CD34 ⁺ cells using the CytoTune [®] -iPS 2.0 Sendai Reprogramming Kit to generate iPSCs cultured on MEF feeder-cells, use the following media at the designated stages of the reprogramming experiment:			
	• StemPro [®] -34 medium containing cytokines (i.e., SCF, IL-3 and GM-CSF) (page 41): Plating cells prior to transduction, post-transduction recovery of cells			
	 StemPro[®]-34 medium containing cytokines + 4 μg/mL of Polybrene: Transduction 			
	• StemPro [®] -34 medium without cytokines (page 41): Plating of transduced cells on MEF culture dishes			
	• iPSC medium (page 40): Expansion of transduced cells on MEF culture dishes, live staining and picking of iPSCs			
Materials needed	Cells and vectors			
	CytoTune [®] 2.0 Sendai reprogramming vectors			
	Note: For successful reprogramming, you need all three tubes of reprogramming vectors.			
	• StemPro [®] CD34 ⁺ cells to reprogram			
	Note: StemPro [®] CD34 ⁺ cells are available as part of the StemPro [®] -34 Medium and CD34 ⁺ Cell Kit (Cat. no. A14059) from Life Technologies.			
	• <i>Optional</i> : Human neonatal foreskin fibroblast cells (strain BJ; ATCC no. CRL2522) as a positive reprogramming control			
	Note: If you are using this as a control, follow the protocol for reprogramming fibroblasts within this manual (page 10).			
	Gibco [®] Mouse Embryonic Fibroblasts (Irradiated) (Cat. no. S1520-100)			
	Media and reagents			
	• StemPro [®] -34 Medium and CD34 ⁺ Cell Kit (Cat. no. A14059)			
	• Recombinant Human SCF Lyophilized (Cat. no. PHC2111)			
	• Recombinant Human IL-3 Lyophilized (Cat. no. PHC0031)			
	• Recombinant Human GM-CSF Lyophilized (Cat. no. PHC2011)			
	• Dulbecco's Modified Eagle Medium (DMEM), High Glucose, with GlutaMAX [™] -I and Pyruvate (Cat. no. 10569-010)			
	• KnockOut [™] DMEM/F-12 (Cat. no. 12660-012)			
	• Fetal Bovine Serum (FBS), ESC-Qualified, US Origin (Cat. no. 16141-079)			
	• KnockOut [™] Serum Replacement (KSR) (Cat. no. 10828-028)			
	• MEM Non-Essential Amino Acids Solution, 10 mM (Cat. no. 11140-050)			
	• GlutaMAX [™] -I (100X) (Cat. no. 35050-061)			
	• Basic Fibroblast Growth Factor (bFGF) (Cat. no. PHG0264)			
	• β-mercaptoethanol, 1000X (Cat. no. 21985-023)			
	Continued on next page			

Materials needed,	• Optional: Penicillin-Streptomycin, Liquid (Cat. no. 15140-122)			
continued	• Polybrene Hexadimethrine Bromide (Sigma Cat. no. H9268)			
	• Attachment Factor (Cat. no. S006100)			
	 TrypLE[™] Select Cell Dissociation Reagent (Cat. no. 12563) or 0.05% Trypsin/EDTA (Cat. no. 25300) 			
	• Dulbecco's PBS (DPBS) without Calcium and Magnesium (Cat. no. 14190)			
	CytoTune [®] 2.0 reprogramming vectors are not compatible with the reprogramming vectors from the original CytoTune [®] -iPS Reprogramming Kits (Cat. nos. A13780-01, A13780-02). Do not mix or substitute CytoTune [®] 2.0 reprogramming vectors with the reprogramming vectors from the original kits.			
Reprogramming protocol	The following protocol has been optimized for StemPro [®] CD34 ⁺ cells derived from the human umbilical cord blood of mixed donors. Note that experimental conditions may vary among target cells and need to be optimized for each cell type. The example given in the following protocol does not guarantee the generation of iPSCs for all cell types.			
	Day –3: Seed cells			
	1. Three days before transduction, remove one vial of StemPro [®] CD34 ⁺ cells $(0.5 \times 10^{6} \text{ cells})$ from the liquid nitrogen storage tank.			
	 Briefly roll the cryovial between hands to remove frost, and swirl it gently in a 37°C water bath to thaw the StemPro[®] CD34⁺ cells. 			
	3. When only a small ice crystal remains in the vial, remove it from water bath. Spray the outside of the vial with 70% ethanol before placing it in the cell culture hood.			
	4. Pipet the thawed cells gently into a 15-mL conical tube.			
	 Add 10 mL of pre-warmed complete StemPro[®]-34 medium (see page 41) drop-wise to the cells. Gently mix by pipetting up and down. 			
	Note : Adding the medium slowly helps the cells to avoid osmotic shock.			
	6. Centrifuge the cell suspension at $200 \times g$ for 10 minutes.			
	 Discard the supernatant and resuspend the cells in 1 mL of complete StemPro[®]-34 medium containing cytokines (i.e., SCF, IL-3 and GM-CSF) (see page 41). 			
	 Place 0.5 mL each of cell suspension into two wells of a 24-well plate and incubate at 37°C in a humidified atmosphere of 5% CO₂. 			
	Note: We recommend using the wells in the middle section of the 24-well plate to			

Note: We recommend using the wells in the middle section of the 24-well plate to prevent excessive evaporation of the medium during incubation.

Day -2: Observe cells and add fresh medium

9. Two days before transduction, add 0.5 mL of fresh complete StemPro[®]-34 medium containing cytokines without disturbing the cells.

Reprogramming protocol

Day -1: Observe cells and add fresh medium

10. One day before transduction, gently remove 0.5 mL of medium and add 1 mL of fresh complete StemPro[®]-34 medium containing cytokines without disturbing the cells.

Figure 3 CD34+ cells grown in StemPro[®]-34 SFM.

Day 0: Count cells and perform transduction

11. Count the cells using the desired method (e.g., Countess[®] Automated Cell Counter), and calculate the volume of each virus needed to reach the target MOI using the **live cell count** and the titer information on the CoA.

Volume of virus (μ L) = $\frac{MOI (CIU/cell) \times number of cells}{titer of virus (CIU/mL) \times 10^{-3} (<math>\mu$ L/mL)}

Note: We recommend initially performing the transductions with MOIs of 5, 5, and 3 (i.e., KOS MOI=5, hc-Myc MOI=5, hKlf4 MOI=3). These MOIs can be optimized for your application.

Note: The titer of each CytoTune[®] 2.0 reprogramming vector is lot-dependent. For the specific titer of your vectors, go to **www.lifetechnologies.com/cytotunegfp** and search for the CoA by product lot number, which is printed on the vial. Avoid re-freezing and thawing of the reprogramming vectors since viral titers can decrease dramatically with each freeze/thaw cycle.

- 12. Harvest the cells and seed the necessary number of wells of a 24-well plate in a minimal volume (~100 μ L) with 1.0 × 10⁵ cells/well for transduction.
- 13. Remove one set of CytoTune[®] 2.0 Sendai tubes from the -80°C storage. Thaw each tube one at a time by first immersing the bottom of the tube in a 37°C water bath for 5–10 seconds, and then removing the tube from the water bath and allowing it to thaw at room temperature. Once thawed, briefly centrifuge the tube and place it immediately on ice.

Reprogramming protocol, continued	14. Add the calculated volumes of each of the three CytoTune [®] 2.0 Sendai viruses to 0.4 mL of pre-warmed StemPro [®] -34 medium containing cytokines and 4 µg/mL of Polybrene. Ensure that the solution is thoroughly mixed by pipetting the mixture gently up and down. Complete the next step within 5 minutes.		
	15. Add the reprogramming virus mixture (from Step 14) to the well(s) containing cells (from Step 12). Incubate the cells at 37° C in a humidified atmosphere of 5% CO ₂ overnight.		
	Day 1: Replace medium and culture cells		
	16. Remove the CytoTune [®] 2.0 Sendai viruses by centrifuging the cells at $400 \times g$ for 10 minutes. Aspirate and discard the supernatant.		
	17. Resuspend the cells in 0.5 mL of complete StemPro [®] -34 Medium containing cytokines (see page 41) in the 24-well plate.		
	18. Incubate the cells in at 37° C in a humidified atmosphere of 5% CO ₂ for two days.		
	Note : While the cells are incubating (i.e., 1–2 days before passaging the transduced cells), prepare the necessary number of MEF culture dishes for each well containing transduced cells (see page 43).		
	Day 3: Plate cells on MEF dishes		
	19. Count the cells using the desired method (e.g., Countess [®] Automated Cell Counter) and seed the MEF dishes with 5×10^4 and 1×10^5 CD34 ⁺ cells per 60-mm dish in 5 mL of complete StemPro [®] -34 Medium without cytokines. Plate any excess cells in an additional MEF culture dish or harvest for RNA extraction to be used as a positive control in the RT-PCR detection of the SeV genome (see page 36)		

- 20. Incubate the cells at 37°C in a humidified atmosphere of 5% $\rm CO_2$ for three days.
- 21. Replace half of the spent medium every other day. Gently remove 2.5 mL of medium from the cells and replace with 2.5 mL of complete StemPro®-34 Medium without cytokines.

Day 7: Transition to iPSC medium

- 22. Remove 2.5 mL of medium from the cells and add 2.5 mL of iPSC medium (see page 40) to transition the cells to the new culture medium.
- 23. Incubate the cells in a 37° C, 5% CO₂ incubator overnight.

Reprogramming	Day 8 to 28: Feed and Monitor the Cells		
protocol, continued	24.	The next day, remove the spent medium completely and replace with 5 mL of iPSC medium. Replace spent medium daily.	
	25.	Starting on Day 8, observe the plates every other day under a microscope for the emergence of cell clumps indicative of reprogrammed cells (see Figure 4, below).	
		Note : For BJ fibroblasts (positive control), colony formation is normally observed on Day 12 post-transduction. However, depending on cell type, it may take up to 4 weeks before colonies are seen.	
	26.	Day 15 to 20 after transduction, colonies should have grown to an appropriate	

- 26. Day 15 to 20 after transduction, colonies should have grown to an appropriate size for transfer. The day before transferring the colonies, prepare the necessary number of MEF culture dishes using 6-, 12-, or 24-well plates. Note: We recommend harvesting colonies closer to 3 weeks to avoid differentiation.
- 27. When colonies are ready for transfer, perform live staining using Tra1-60 or Tra1-81 for selecting reprogrammed colonies if desired (see **Live Staining**, page 32).
- 28. Manually pick colonies and transfer them onto prepared MEF dishes (see **Picking iPSC Colonies**, page 34).

Figure 4 Emergence of cell clumps indicative of reprogrammed cells at Day 19.

Identifying and Picking iPSC Colonies

Visual Identification

By Day 21 post-transduction, the cell colonies on the MEF culture dishes will have Visual identification become large and compact, covering the majority of the surface area of the culture dish. However, only a fraction of these colonies will consist of iPSCs, which exhibit a hESC-like morphology characterized by a flatter cobblestone-like appearance with individual cells clearly demarcated from each other in the colonies (see Figure 5, below). Therefore, we recommend that you perform live staining with Tra1-60 or Tra1-81 antibodies that recognize undifferentiated hESCs (see Live Staining, page 32). Although colonies of "transformed" cells may emerge as early as 7 days after transduction, most of these colonies will not be correctly "reprogrammed" cells. iPSCs usually emerge a little later (around day 14 post-transduction), resemble embryonic stem cells in morphology, and express the cell surface markers Tra1-60 and Tra1-81. Morphology of The images below show the morphology of human neonatal foreskin fibroblast cells (strain BJ) that were reprogrammed into iPSCs using the CytoTune®-iPS 2.0 reprogrammed Sendai Reprogramming Kit. cells Figure 5 Human neonatal foreskin fibroblast cells (strain BJ) were transduced using the CytoTune®-iPS 2.0 Sendai Reprogramming Kit and allowed to proliferate on MEF feeder layers in iPSC medium. The images were obtained using a 5X objective. Fibroblasts before transduction (5X) 2 days post-transduction (5X) 10 days post-transduction (5X) 14 days post-transduction (5X) 18 days post-transduction (5X) 21 days post-transduction (5X)

Live Staining

Live staining with antibodies	One of the fastest and most reliable methods for identifying a reprogrammed colony is live staining with Tra1-60 or Tra1-81 antibodies that recognize undifferentiated iPSCs and enable the identification of reprogrammed cells from a variety of human cell types. Note: Other methods of identifying iPSCs (such as alkaline phosphatase staining) are also acceptable.				
Required	Primary Antibodies				
antibodies	You can use one or more of the following primary antibodies, diluted to the appropriate working concentration (see instructions provided with the antibody) in KnockOut [™] DMEM/F-12.				
	• Mouse anti-Tra1-60 antibody (Cat. no. 41-1000)				
	• Mouse anti-Tra1-81 antibody (Cat. no. 41-1100)				
	• Mouse anti-SSEA4 (Cat. no. 41-4000)				
	Secondary Antibodies				
	You can use one or more of the following secondary antibodies, diluted to the appropriate working concentration (see instructions provided with the antibody) in KnockOut [™] DMEM/F-12.				
	• Alexa Fluor [®] 488 goat anti-mouse IgG (H+L) antibody (Cat. no. A11029)				
	• Alexa Fluor [®] 594 goat anti-mouse IgG (H+L) antibody (Cat. no. A11032)				
Live staining protocol	If live-stained cells are to be used for further culture, be sure to use antibodies that are sterile (filter sterilize as necessary) and work aseptically.				
	1. Aspirate the medium from the reprogramming dish.				
	2. Wash the cells once with 1X KnockOut ^{TM} DMEM/F-12.				
	3. Add the diluted primary antibody to the cells (2 mL per 60-mm dish, 6 mL per 100-mm dish).				
	4. Incubate the primary antibody and the cells at 37°C for 60 minutes.				
	 Remove the primary antibody solution from the dish. Note: The primary antibody solution can be stored at 4°C for 1 week and re-used up to 2 times. 				
	6. Wash cells three times with KnockOut [™] DMEM/F-12.				
	7. Add the diluted secondary antibody to the cells (2 mL per 60-mm dish, 6 mL per 100-mm dish).				
	Continued on next page				

32

Live Staining, continued

Live staining	8.	Incubate the secondary antibody and the cells at 37°C for 60 minutes.
protocol, continued	9.	Remove the secondary antibody solution from the dish.
		Note: The secondary antibody solution can be stored at 4°C for 1 week and re-used up to 2 times.
	10.	Wash cells three times with KnockOut [™] DMEM/F-12 and add fresh KnockOut [™] DMEM/F-12 to cover the surface of the cells (2 mL per 60-mm dish, 6 mL per 100-mm dish).
	11.	Visualize the cells under a standard fluorescent microscope. Successful antibody staining can very specifically distinguish reprogrammed colonies from just plain transformed counterparts (see Figure 6, below), and can be detected for up to 24–36 hours. This is particularly useful because it below

detected for up to 24–36 hours. This is particularly useful because it helps identifying and tracking of candidate iPS colonies before picking and the day after they are transferred into a new culture dish for expansion. Note that live stained colonies can be expanded.

Figure 6 iPSC colony (10X) under phase contrast (on left) and stained with Tra 1-60 antibody (on right) on Day 20 post-transduction.

Picking iPSC Colonies

Protocol for picking iPSC colonies	1.	Place the culture dish containing the reprogrammed cells under an inverted microscope and examine the colonies under 10X magnification.
(feeder-dependent)	2.	Mark the colony to be picked on the bottom of the culture dish. Note: We recommend picking at least 10 distinct colonies by the end of each reprogramming experiment and expanding them in separate 24-well MEF culture plates (see below).
	3.	Transfer the culture dish to a sterile cell culture hood (i.e., biosafety cabinet) equipped with a stereomicroscope.
	4.	Using a 25 gauge 1½ inch needle, cut the colony to be picked into 5–6 pieces in a grid-like pattern.
	5.	Using a 200 µL pipette, transfer the cut pieces to a freshly prepared 24-well MEF culture plate (see page 43) containing iPSC medium (see page 40).
	6.	Incubate the MEF culture plate containing the picked colonies in a 37°C incubator with a humidified atmosphere of 5% CO ₂ .
	7.	Allow the colonies to attach to the culture plate for 48 hours before replacing the spent medium with fresh iPSC medium. After that, change the medium every day.
	8.	Treat the reprogrammed colonies like normal human ESC colonies and passage, expand, and maintain them using standard culture procedures until you have frozen cells from two 60-mm plates (see Freezing iPSCs in iPSC freezing medium , page 52).
Protocol for picking iPSC colonies (feeder-free)	1.	Pick the iPSCs as described on above, up to step 4.
	2.	Using a 200 µL pipette, transfer the cut pieces onto a vitronectin-coated culture plate (see page 45) containing complete Essential 8 [™] Medium (page 40).
	3.	Incubate the vitronectin-culture plate containing the picked colonies in a 37° C incubator with a humidified atmosphere of 5% CO ₂ .
	4.	Allow the colonies to attach to the culture plate for 48 hours before replacing the spent medium with fresh complete Essential 8 [™] Medium. After that, change the medium every day.
	5.	When the colonies cover ~85% of the surface area of the culture vessel, they are ready for passaging. Passage the colonies using 0.5 mM EDTA prepared in Dulbecco's Phosphate-Buffered Saline (DPBS) without calcium or magnesium (see Passaging iPSCs Using EDTA , page 51). Note: Enzymes such as collagenase and dispase do not work well with cells cultured in Essential 8 [™] Medium on vitronectin-coated plates. Use of these enzymes for passaging cells results in compromised viability and attachment.
	6.	Continue to culture, expand, and maintain the reporgrammed colonies in complete Essential 8 [™] Medium until you have frozen cells from two 60-mm plates (see Freezing iPSCs in Essential 8[™] Freezing Medium , page 53).
Generating Vector-Free iPSCs

Generating Vector-Free iPSCs

Guidelines for generating vector-free iPSCs

- The time needed to derive vector-free iPSCs may vary depending on culture and passage conditions. In the case of human neonatal foreskin fibroblast cells (strain BJ), it takes about 1–2 months after gene transduction to obtain iPSCs free of CytoTune[®] 2.0 Sendai reprogramming vectors.
- To obtain virus-free clones faster, we recommend that you perform single colony subcloning for the first few passages (minimum 5) instead of bulk or pooled-clone passaging.
- To perform single colony subcloning, pick from a single colony to transfer to another 6-well plate (Passage 1). From Passage 1, pick a single colony and transfer to another 6-well plate (passage 2) and so forth. We recommend subcloning for 5 passages and then testing for virus free iPSCs.

Dulbecco's PBS (DPBS) without Calcium and Magnesium (Cat. no. 14190)

Materials required

- Rabbit anti-SeV antibody (MBL International Corporation, Woburn, MA; Cat. no PD029)
- Alexa Fluor[®] 488 goat anti-rabbit IgG (H+L) antibody (Cat no. A11034) or Alexa Fluor[®] 594 goat anti-rabbit IgG (H+L) antibody (Cat no. A11037)
- TRIzol[®] LS reagent (Cat. no. 10296-010)
- SuperScript[®] VILO[™] cDNA Synthesis Kit (Cat. no. 11754-050)
- AccuPrime[™] SuperMix I (Cat. no. 12342-010)

Protocol for generating vector-free iPSCs

- 1. When passaging iPSC colonies, prepare duplicate plates; one for immunostaining and one for further passaging.
- 2. Perform immunostaining on one plate using anti-SeV antibodies (see below).
- 3. If any colonies stain positive, perform cell cloning on the other duplicate plate.
- 4. Repeat immunostaining with anti-SeV antibodies on the cloned colonies until all colonies in a plate are negative.
- 5. If all colonies are negative for anti-SeV antibodies, passage the cells and confirm the absence of the CytoTune[®] 2.0 Sendai reprogramming vectors by RT-PCR (see page 36).

Generating Vector-Free iPSCs, continued

Immunocytochemistry with anti-SeV antibodies

- 1. Wash cells once with D-PBS
- 2. Fix the cells in 4% paraformaldehyde for 5 minutes at room temperature.
- 3. Wash cells twice with D-PBS.
- 4. Add the anti-SeV antibody (MBL, Cat. no PD029) diluted in 0.1% Triton[®] X-100 in D-PBS to the cells and incubate for 1 hour at 37°C.
- 5. Remove the antibody solution. Wash the cells 3 times with D-PBS.
- 6. Add the secondary antibody diluted in 0.1% Triton[®] X-100 in D-PBS to the cells and incubate for 1 hour at 37°C.
- 7. Remove the secondary antibody solution from the dish. Wash the cells 3 times with D-PBS.
- 8. Visualize the cells under a fluorescence microscope.

RT-PCR protocol for detecting the SeV genome and transgenes

- 1. Extract the total RNA from 5×10^6 iPSCs using the TRIzol[®] Reagent (Cat. no. 15596-026) following the instructions provided with the reagent. As a positive control, use cells set aside during the reprogramming procedure.
- Carry out a reverse transcription reaction using 1 µg of RNA (from step 1) and the SuperScript[®] VILO[™] cDNA Synthesis Kit (Cat. no. 11754-050) following the instructions provided with the kit.
 Note: Because the CytoTune[®] 2.0 Sendai reprogramming vectors are based on SeV, which is an RNA virus, reverse transcription is required for detecting the presence of the SeV genome in your reprogrammed cells.
- 3. Carry out the PCR using 10 µL of cDNA from the reverse transcription reaction (Step 2, above) and AccuPrime[™] SuperMix I (Cat. no. 12342-010) with the parameters below. For the RT-PCR primer sequences and the expected product size, refer to the table on page 37.

Step	Temperature	Time	Cycles
Denaturation	95°C	30 seconds	
Annealing	55°C	30 seconds	30–35
Elongation	72°C	30 seconds	

4. Analyze the PCR products using 2% agarose gel electrophoresis.

If you still detect CytoTune[®] 2.0 Sendai virus in your iPSC lines after more than 10 passages, and have performed RT-PCR to show that hKlf4 is absent from your cells (this vector does not have the temperature sensitive mutation), then you can perform a temperature shift to remove the c-Myc vector. CytoTune[®] 2.0 Sendai hc-Myc tends to persist in the cells longer than the other CytoTune[®] 2.0 Sendai reprogramming vectors. However, because this vector contains a temperature sensitivity mutation, you can enhance its removal and obtain complete absence of Sendai virus by incubating your cells at 38–39°C for 5 days.

Generating Vector-Free iPSCs, continued

RT-PCR primer The table below shows the RT-PCR primer set used for detecting the SeV genome and transgenes in cells reprogrammed using the CytoTune[®] 2.0 Sendai reprogramming vectors.

Target			Primer sets		Product size
SeV	Forward: GGA	TCA CTA	GGT GAT ATC	GAG C*	101 h-s
Sev	Reverse: ACC	AGA CAA	GAG TTT AAG	G AGA TAT GTA TC*	181 bp
KOS	Forward: ATG	CAC CGC	TAC GAC GTG	AGC GC	FO Q 1
KUS	Reverse: ACC	TTG ACA	ATC CTG ATG	; TGG	528 bp
K1f4	Forward: TTC	CTG CAT	GCC AGA GGA	GCC C	410 hm
NII4	Reverse: AAT	GTA TCG	AAG GTG CTC	AA [*]	410 bp
a Mara	Forward: TAA	CTG ACT .	AGC AGG CTT	GTC G*	522 hr
c-Myc	Reverse: TCC	ACA TAC	AGT CCT GGA	A TGA TGA TG	532 bp

* Primer contains SeV genome sequences. Pairing of these primers with transgene-specific primers allows specific detection of transgenes carried by the CytoTune[®] 2.0 Sendai reprogramming vectors.

Troubleshooting

Problem	Possible cause	Solution
Cytotoxic effects observed after transduction	Viral load too high	Decrease the volume of CytoTune [®] 2.0 vector or increase the starting cell number.
Too many colonies on the plate	Too many cells plated	Decrease the number of cells plated after transduction.
No iPSC colony formation	Insufficient amount of virus used	• Check the volume of the CytoTune [®] 2.0 vector and the starting cell number. Changing the MOI may improve the results.
		• We suggest initially increasing the MOI of Klf4 to improve efficiency (e.g., KOS MOI = 5, c-Myc MOI =5, Klf4 MOI =6). If efficiencies are still too low, increase the MOI of KOS and c-Myc, while maintaining a 1:1 ratio between the two (e.g. KOS MOI = 10, c-Myc MOI = 10, Klf4 =6).
		 Not all cell types will be reprogrammed with the same efficiency. Check the levels of protein expression in your cell type using TaqMan[®] Protein Assays (see page 56 for ordering information).
		• Do not re-freeze thaw or aliquot virus. Viral titer is not guaranteed for kits refrozen or thawed.
Too few iPSC colony compared to BJ fibroblasts	Cell type not efficiently reprogrammable	 Not all cell types will have the same reprogramming efficiency. Increase the number of the cells plated.
		• If reprogramming a new cell type, use the CytoTune [®] -EmGFP Sendai Fluorescence Reporter to assess uptake of Sendai virus (page 48).
iPSC colonies look differentiated	iPSC colonies transferred to MEF dishes too late	Perform staining earlier and transfer iPSC colony to fresh feeder cells.
Difficult to obtain vector-free iPSCs	Cell type cannot efficiently eliminate the CytoTune [®] 2.0 Sendai reprogramming vector	 Some cell strains may need longer time to eliminate the CytoTune[®] 2.0 Sendai vectors and become vector-free compared to other strains. Perform repeated single colony subcloning until you obtain negative cells as determined by immunocytochemistry with anti-SeV antibodies. It may be easier to obtain SeV-negative colonies if single colony subcloning is performed by transferring a portion of a colony with a glass pipette. The rate with which iPSC colonies eliminate the CytoTune[®] 2.0 Sendai vectors may increase if the cells are incubated for 5 days at 38–39°C after you have confirmed by RT PCR that the Klf4 vector is absent from your cells and only KOS
		and/or c-Myc vectors remain (see Note on page 36).

Appendix A: Recipes

Preparing Media and Reagents

Basic FGF stock solution	 To prepare 1000 μL of 10-μg/mL Basic FGF solution, aseptically mix the following components: Basic FGF D-PBS without Ca²⁺ and Mg²⁺ 980 μL 10% BSA 10 μL Aliquot and store the Basic FGF solution at -20°C for up to 6 months.
SCF (c-kit Ligand), FLT-3 Ligand, IL-3, IL-6, and GM-CSF Stock Solutions	SCF (c-kit Ligand), FLT-3 Ligand, IL-3, IL-6, and GM-CSF are supplied lyophilized. Prepare stock solutions as described in their specific product inserts and store small aliquots frozen. Thaw at time of use.
Collagenase IV solution	 To prepare 50 mL of a 1-mg/mL Collagenase IV solution, aseptically mix the following components: Collagenase IV 50 mg KnockOut[™] DMEM/F-12 50 mL Sterilize the Collagenase IV solution through a 0.2 µm filter. Aliquot and store the Collagenase IV solution at -20°C for up to 6 months.
0.5 mM EDTA in DPBS (50 mL)	 To prepare 50 mL of 0.5 mM EDTA in DPBS, aseptically mix the following components in a 50-mL conical tube in a biological safety cabinet: DPBS without Calcium and Magnesium 50 mL 0.5 M EDTA 50 μL Filter sterilize the solution. The solution can be stored at room temperature for up to six months.
MEF/Fibroblast medium (for 100 mL of complete medium)	 To prepare 100 mL of complete MEF/fibroblast medium, aseptically mix the following components: DMEM FBS, ESC-Qualified MEM Non-Essential Amino Acids Solution, 10 mM mL β-mercaptoethanol, 55 mM 100 μL Complete MEF/fibroblast medium can be stored at 2–8°C for up to 1 week.

Preparing Media and Reagents, continued

iPSC medium (for 100 mL of	1.	To prepare 100 mL of complete iPSC medium, aseptically mix the following components:		
complete medium)		- KnockOut [™] DMEM/F-12	78 mL	
		KnockOut [™] Serum Replacement (KSR)	20 mL	
		MEM Non-Essential Amino Acids Solution, 10 mM	1 mL	
		GlutaMAX [™] -I	1 mL	
		β-mercaptoethanol, 55 mM	100 µL	
		Penicillin-Streptomycin (optional)	1 mL	
		bFGF (10 μg/mL)*	40 µL	
		* Prepare the iPSC medium without bFGF, and then su fresh bFGF when the medium is used.	•	
	2.	Complete iPSC Medium (without bFGF) can be stored at 2 1 week.	-8°C for up to	
Essential 8 [™] Medium (for 500 mL of	1.	Thaw frozen Essential 8 [™] Supplement at 2–8°C overnight l prepare complete medium. Do not thaw the frozen suppl		
complete medium)	2.	Mix the thawed supplement by gently inverting the vial a remove 10 mL from the bottle of Essential 8 [™] Basal Medium aseptically transfer the entire contents of the Essential 8 [™] S bottle of Essential 8 [™] Basal Medium. Swirl the bottle to mit 500 mL of homogenous complete medium.	m, and then Supplement to the	
	3.	Complete Essential 8 [™] Medium can be stored at 2–8°C for up to 2 weeks. Before use, warm complete medium required for that day at room temperature until it is no longer cool to the touch. Do not warm the mediu at 37°C.		
StemPro [®] hESC SFM (for 500 mL of	1.	To prepare 500 mL of complete StemPro [®] hESC SFM, asep following components:	tically mix the	
complete medium)		$DMEM/F-12 + GlutaMAX^{TM}$ (1X)	454 mL	
•		StemPro [®] hESC SFM Growth Supplement (50X)	10 mL	
		BSA, 25%	36 mL	
		bFGF (10 μg/mL)	400 µL	
		β-mercaptoethanol, 55 mM	909 μL	
	2.	Complete medium may be stored at 2–8°C in the dark for up to 7 days. Add β-Mercaptoethanol daily during storage, at the volume listed above.		

Preparing Media and Reagents, continued

PBMC medium (for 500 mL of complete medium)	ap	BMC medium consists of complete StemPro [®] -34 medium supplemented with the propriate cytokines. Follow the procedure below to prepare 500 mL of complete BMC medium.		
complete medium,	1.	Thaw the frozen StemPro [®] -34 Nutrient Supplement at 4°C overnight.		
	2.	After thawing, mix the supplement well by gently inverting the vial a couple of times, and then aseptically transfer the entire contents of the vial to the bottle of StemPro [®] -34 SFM. Swirl the bottle to mix and to obtain a homogenous complete medium.		
	3.	Aseptically add L-Glutamine to a final concentration of 2 mM (5 mL of 200 mM L-Glutamine to 500 mL of medium).		
	4.	The complete medium (without cytokines) has a shelf life of 30 days when stored at 2–8°C, in the dark.		
	5.	Add the following cytokines to the indicated final concentration on the day of use :		
		Cytokine Final concentration		
		SCF 100 ng/mL		
		FLT-3 100 ng/mL		
		IL-3 20 ng/mL		
		IL-6 20 ng/mL		
StemPro [®] -34	1.	Thaw the frozen StemPro [®] -34 Nutrient Supplement overnight at 4°C.		
medium	1. 2.	Mix the thaved supplement well by gently inverting the vial several times.		
(for 500 mL complete medium)	2.	Aseptically transfer the entire contents of the vial to the bottle of StemPro [®] -34 SFM. Swirl the bottle to mix and to obtain a homogenous complete medium.		
	3.	Aseptically add L-Glutamine to a final concentration of 2 mM (5 mL of 200 mM L-Glutamine to 500 mL of medium)		
		Note: You may substitute L-Glutamine with 5 mL of GlutaMAX [™] -I (100X) in 500 mL of medium.		
	4.	Complete StemPro [®] -34 medium (without cytokines) can be stored at 2–8°C for up to 4 weeks.		
StemPro [®] -34 medium with	1.	Prepare cytokines (SCF, IL-3, GM-CSF) according to their specific product instructions.		
cytokines for CD34⁺ cell culture	2.	On the day of use , aseptically add the appropriate volume of each cytokine to StemPro [®] -34 Medium to achieve the recommended final concentration (10 mL total volume):		
(for 10 mL complete medium)		Cytokine Final concentration		
complete medium)		SCF 100 ng/mL		
		IL-3 50 ng/mL		
		GM-CSF 25 ng/mL		

Preparing Media and Reagents, continued

iPSC freezing	Prepare the Freezing Media A and B immediately before use.		ately before use.
medium	1.	In a sterile 15-mL tube, mix together the following reagents for every 1 mL of freezing medium A needed:	
		iPSC medium	0.5 mL
		KnockOut [™] Serum Replacement	0.5 mL
	2.	In another sterile 15-mL tube, mix togethe 1 mL of freezing medium B needed:	er the following reagents for every
		iPSC medium	0.8 mL
		DMSO	0.2 mL
	3.	Place the tube with freezing medium B or freezing medium A at room temperature) medium after use.	
Essential 8 [™] freezing medium	1.	Pre-warm the required volume of Essenti until it is no longer cool to the touch. Do water bath.	
	2.	Prepare Essential 8 [™] Freezing Medium. F needed, aseptically combine the compone tube:	
		Complete Essential 8 [™] Medium	0.9 mL
		DMSO	0.1 mL
	3.	Place the tube with Essential 8 [™] Freezing any remaining freezing medium after use	

Appendix B: Preparing Culture Vessels

Preparing MEF Culture Dishes

Gelatin coating culture vessels		Cover the whole surface of each culture vessel with Attachment Factor (AF) solution and incubate the vessels for 30 minutes at 37°C or for 2 hours at room temperature. Note: AF is a sterile 1X solution containing 0.1 % gelatin available from Life Technologies (see page 54 for ordering information).
	2.	Using sterile technique in a laminar flow culture hood, completely remove the AF solution from the culture vessel by aspiration.
		Note: It is not necessary to wash the culture surface before adding cells or medium. Coated vessels may be used immediately or wrapped in Parafilm [®] sealing film and stored at room temperature for up to 24 hours.
Thawing MEFs	1.	Remove the cryovial containing inactivated MEFs from the liquid nitrogen storage tank.
	2.	Briefly roll the vial between hands to remove frost, and swirl it gently in a 37°C water bath.
	3.	When only a small ice crystal remains in the vial, remove it from water bath. Spray the outside of the vial with 70% ethanol before placing it in the cell culture hood.
	4.	Pipet the thawed cells gently into a 15-mL conical tube.
	5.	Rinse the cryovial with 1 mL of pre-warmed MEF medium. Transfer the medium to the same 15-mL tube containing the cells.
	6.	Add 4 mL of pre-warmed MEF medium drop-wise to the cells. Gently mix by pipetting up and down.
		Note : Adding the medium slowly helps the cells to avoid osmotic shock.
	7.	Centrifuge the cells at $200 \times g$ for 5 minutes.
	8.	Aspirate the supernatant and resuspend the cell pellet in 5 mL of pre-warmed MEF medium.
	9.	Remove 20 μ L of the cell suspension and determine the viable cell count using your method of choice (e.g., Countess [®] Automated Cell Counter).
		Continued on next nage

Preparing MEF Dishes, continued

 $20 \ cm^2$

 60 cm^2

 25 cm^2

 75 cm^2

60-mm dish

100-mm dish

25-cm² flask

75-cm² flask

Plating MEFs		Centrifuge the remaining cell suspension (step 9, page 43) at $200 \times g$ for 5 minutes at room temperature.					
		Aspirate the supernatant. Resuspend the cell pellet in MEF medium to a density of 2.5×10^5 cells/mL.					
	3. Aspirate t	Aspirate the gelatin solution from the gelatin coated culture vessel.					
	4. Add the a to the tabl	ppropriate amount of N e below).	/IEF medium into eacl	h culture vessel (refer			
		of these culture vessels, n (refer to the table belo		amount of MEF			
		Note: The recommended plating density for Gibco [®] Mouse Embryonic Fibroblasts (Irradiated) is 2.5×10^4 cells/cm ² .					
		. Move the culture vessels in several quick back-and-forth and side-to-side motions to disperse the cells across the surface of the vessels.					
	7. Incubate t 5% CO ₂ .	···					
	8. Use the M	8. Use the MEF culture vessels within 3–4 days after plating.					
	Surface area Volume of MEF						
Culture vessel		Volume of media	Number of MEFs	suspension			
96-well plate	10 cm ² per well	0.1 mL	1.0×10^4 /well	40 µL			
24-well plate	4 cm ² per well	0.5 mL	5.0×10^4 /well	200 µL			
12-well plate	2 cm ² per well	1 mL	1.0×10^5 /well	400 µL			
6-well plate	10 cm ²	2 mL	2.5×10^5 /well	1 mL			

 $5\,mL$

10 mL

5 mL

15 mL

Figure 7 Mitotically inactivated Mouse Embryonic Fibroblasts (MEFs) plated on culture vessels coated with Attachment Factor, shown here 4 days after plating.

 5.0×10^{5}

 1.5×10^6

 6.3×10^5

 1.9×10^{6}

 $2\,mL$

6 mL

2.5 mL

7.5 mL

Coating Culture Vessels with Vitronectin

Vitronectin working concentration

The optimal working concentration of vitronectin is cell line dependent and must be determined empirically. We recommend using a final coating concentration of $0.5 \,\mu\text{g/cm}^2$ on the culture surface. Prior to coating culture vessels, calculate the working concentration of vitronectin using the formula below and dilute the stock appropriately. Refer to the table below for culture surface area and volume required.

Working Conc. = Coating Conc. × Culture Surface Area
Volume Required for Surface Area

Dilution Factor = Stock Concentration (0.5 mg/mL) Working Concentration

For example, to coat a 6-well plate at a coating concentration of $0.5 \,\mu\text{g/cm}^2$, you will need to prepare 6 mL of diluted vitronectin solution ($10 \,\text{cm}^2$ /well surface area and 1 mL of diluted vitronectin/well; see table below) at the following working concentration:

Working concentration. = $0.5 \ \mu g/cm^2 \times \frac{10 \ cm^2}{1 \ mL} = 5 \ \mu g/mL$

Dilution factor = $\frac{0.5 \text{ mg/mL}}{5 \mu \text{g/mL}}$ = 100X (i.e., 1:100 dilution)

Culture vessel	Surface area	Volume of diluted vitronectin solution
6-well plate	10 cm ² per well	1.0 mL/well
12-well plate	4 cm ² per well	0.4 mL/well
24-well plate	2 cm ² per well	0.2 mL/well
35-mm dish	10 cm ²	1.0 mL
60-mm dish	20 cm ²	2.0 mL
100-mm dish	60 cm ²	6.0 mL
T-25 flask	25 cm ²	2.5 mL
T-75 flask	75 cm ²	7.5 mL

Coating Culture Vessels with Vitronectin, continued

Coating procedure	con ver vit	structions for coating a 6-well culture plate with vitronectin at a coating ncentration of $0.5 \ \mu g/cm^2$ are provided below. For volumes used in other culture ssels, refer to the table on the page 45. To calculate the working concentration of ronectin used with other coating concentrations and to determine the appropriate dution factor, use the equations on page 45.
		Upon receipt, thaw the vial of vitronectin at room temperature and prepare $60-\mu$ L aliquots of vitronectin in polypropylene tubes. Freeze the aliquots at -80° C or use immediately.
	2.	To coat the wells of a 6-well plate, remove a 60- μ L aliquot of vitronectin from –80°C storage and thaw at room temperature. You will need one 60- μ L aliquot per 6-well plate.
	3.	Add 60 µL of thawed vitronectin into a 15-mL conical tube containing 6 mL of sterile DPBS without Calcium and Magnesium (Cat. no. 14190) at room temperature. Gently resuspend by pipetting the vitronectin dilution up and down.
		Note: This results in a working concentration of $5 \mu\text{g/mL}$ (i.e., a 1:100 dilution).
	4.	Add 1 mL of the diluted vitronectin solution to each well of a 6-well plate (refer to Table 1 for the recommended volumes for other culture vessels). When used to coat a 6-well plate (10 cm^2 /well) at 1 mL/well, the final concentration will be 0.5 µg/cm^2 .
	5.	Incubate the coated plates at room temperature for 1 hour. Note: The culture vessel can now be used or stored at 2–8°C wrapped in laboratory film for up to a week. Do not allow the vessel to dry. Prior to use, pre-warm the culture vessel to room temperature for at least 1 hour.
	6.	Aspirate the vitronectin solution and discard. It is not necessary to rinse off the culture vessel after the removal of vitronectin. Cells can be passaged directly onto the vitronectin-coated culture vessels.

Coating Culture Vessels with Geltrex[®] Matrix

60-mm dish

100-mm dish

Coating protocol	1.	Thaw a 5-mL bottle Factor Basement M		Free hESC-Qualified Reduced Growth 2–8°C overnight.	
	2.	Geltrex [®] matrix solution aliquots (or another	ution 1:1 with cold s volume suitable fo	g fibroblasts, dilute the thawed sterile DMEM/F-12 to prepare 1-mL or your needs) in tubes chilled on ice. or used immediately.	
		For reprogramming experiments using hematopoietic progenitor cells (HPCs), such as StemPro [®] CD34 ⁺ cells, do not dilute the Geltrex [®] matrix solution 1:1 to create the intermediate dilution. The Geltrex [®] matrix solution needs to be twice as strong for reprogramming experiments with HPCs.			
	 To create working stocks, dilute an aliquot of Geltrex[®] matrix solution with cold DMEM on ice. This creates a final dilution of 1:100 for fibrol or a final dilution of 1:50 for StemPro[®] CD34⁺ cells. 			final dilution of 1:100 for fibroblasts	
		Note: An optimal dilution of the Geltrex [®] matrix solution may need to be determined for each cell line. Try various dilutions from 1:30 to 1:100.			
		Quickly cover the whole surface of each culture dish with the Geltrex [®] matrix solution (see table below).			
	5.	Incubate the dishes in a 37°C, 5% CO_2 incubator for 1 hour.			
	6.	Geltrex [®] matrix-coa up to a week. Do no		can now be used or stored at 2–8°C for ry.	
	7.	discard. You do not	t need to rinse off th emoval. Cells can no	plution from the culture dish and ne Geltrex [®] matrix solution from the ow be passaged directly onto the	
		Culture vessel	Surface area	Volume of Geltrex [®] matrix dilution	
	6-	well plate	10 cm ² /well	1.5 mL/well	
	12	2-well plate	4 cm ² /well	750 μL/well	
		4-well plate	2 cm ² /well	350 μL/well	
	35-mm dish		10 cm ²	1.5 mL	

 $20 \ \text{cm}^2$

60 cm²

3.0 mL

6.0 mL

Appendix C: Support Protocols

CytoTune[®]-EmGFP Reporter Control Transduction

CytoTune [®] -EmGFP Sendai Fluorescence Reporter	The CytoTune [®] -EmGFP Sendai Fluorescence Reporter (Cat. no. A16519), available separately from Life Technologies, is a control vector carrying the Emerald Green Fluorescent Protein (EmGFP) gene. The fluorescent control vector allows you to determine whether your cells of interest are amenable or refractive to transduction by Sendai reprogramming vectors. We recommend testing your cell line interest using the CytoTune [®] -EmGFP Sendai Fluorescence Reporter before starting your reprogramming experiments.
Guidelines for using the CytoTune [®] - EmGFP Sendai Fluorescence	• Transducing your cell line of interest using the CytoTune [®] -EmGFP Sendai Fluorescence Reporter allows you to determine whether or not the cells can be transduced by the Sendai virus vectors; it does not indicate the cell line's capability to be reprogrammed.
Reporter	• Different cell types require different MOIs to express detectable levels of EmGFP. As such, cells should be transduced using a range of different MOIs. We suggest initially transducing your cells with at least 2–3 different MOIs (e.g. 1, 3, and 9).
	• Expression of EmGFP should be detectable at 24 hours post-transduction by fluorescence microscopy, and reach maximal levels at 48–72 hours.
	• The titer of the CytoTune [®] EmGFP vector is lot-dependent. For the specific titer of the vector, refer to the Certificate of Analysis (CoA) available on our website. Go to www.lifetechnologies.com/cytotunegfp and search for the CoA by product lot number, which is printed on the vial.
	• Avoid re-freezing and thawing of the CytoTune [®] -EmGFP Sendai Fluorescence Reporter since viral titers can decrease dramatically with each freeze/thaw cycle.
	CytoTune [®] 2.0 reprogramming vectors are not compatible with the reprogramming vectors from the original CytoTune [®] -iPS Reprogramming Kits (Cat. nos. A13780-01, A13780-02). Do not mix or substitute CytoTune [®] 2.0 reprogramming vectors with the

A13780-02). Do **not** mix or substitute CytoTune[®] 2.0 reprogramming vectors with the reprogramming vectors from the original kits.

protocol for adherent cells

Control transduction Day -1 to -2: Prepare the cells for transduction

- 1. 1–2 days before transduction, plate the cells of interest onto the necessary number of wells of a multi-well plate at the appropriate density to achieve 70–80% confluency on the day of transduction (Day 0). One extra well can be used to count cells for viral volume calculations.
- Culture the cells for one to two more days, ensuring the cells have fully 2. adhered and extended.

CytoTune[®]-EmGFP Reporter Control Transduction, continued

Control transductionDay 0: Perform transductionprotocol for3.On the day of transductionadherent cells,medium for each well tocontinuedwell plate) in a 37°C wate

3. On the day of transduction, warm an appropriate volume of cell culture medium for each well to be transduced (e.g., 0.5 mL for each well of a 12well plate) in a 37°C water bath. 4. Harvest cells from one well of the multi-well plate and perform a cell count. These cells will not be transduced, but will be used to estimate the cell number in the other well(s) plated in Step 1. Note: This step is optional and is performed to obtain more accurate MOI calculations. If exact MOIs are not needed, a rough estimate of the number of cells in the well (based on plating density and growth rates) will also suffice. 5. Count (or estimate) the cell number using the desired method (e.g., Countess[®] Automated Cell Counter), and calculate the volume of the virus needed to reach the target MOI(s). Titer information can be found on the CoA. Volume of virus (μ L) = $\frac{MOI (CIU/cell) \times number of cells}{titer of virus (CIU/mL) \times 10^{-3} (<math>\mu$ L/mL)} 6. Remove one tube of CytoTune[®]-EmGFP Sendai Fluorescence Reporter from the -80°C storage. Thaw the vector by first immersing the bottom of the tube in a 37°C water bath for 5–10 seconds, and then removing the tube from the water bath and allowing its contents to thaw at room temperature. Once thawed, briefly centrifuge the tube and place it immediately on ice. Add the calculated volume of CytoTune®-EmGFP Sendai Fluorescence 7. Reporter to the pre-warmed cell culture medium prepared in Step 3. Ensure that the solution is thoroughly mixed by pipetting the mixture gently up and down. Complete the next step within 5 minutes. 8. Aspirate the cell culture medium from the cells, and add the solution prepared in Step 7 to the well. Incubate the cells in a 37°C, 5% CO₂ incubator overnight. Day 1: Replace medium and culture cells 9. 24 hours after transduction, replace the medium with fresh cell culture medium. Note: Depending on your cell type, you should expect to see some cytotoxicity 24-48 hours post-transduction, which can affect >50% of your cells. This is an indication of high uptake of the virus. We recommend that you continue culturing your cells and proceed with the protocol. 10. Visualize the cells on a fluorescence microscope using a standard FITC filter set. EmGFP expression should be visible in some cells (expression will reach maximum levels between 48–72 hours). Day 2+: Replace medium and culture cells 11. 48 hours after transduction, replace the medium with fresh cell culture medium. 12. Visualize the cells on a fluorescence microscope using a standard FITC filter set. EmGFP expression should be much brighter than Day 1, and should be visible in many cells (see Figure 8, page 50).

CytoTune®-EmGFP Reporter Control Transduction, continued

Reporter at the indicated MOI (1 or 3) and at the indicated time post-transduction (24 or 48 hours). 24 hours 48 hours MOI 1 MOI 3

Expected results

Figure 8 BJ HDFn cells transduced with the CytoTune®-EmGFP Sendai Fluorescence

Passaging iPSCs Using EDTA

	Culture ve	ssel	Surface area	DPBS	0.5 mM EDTA in DPBS	Complete Essential 8™ Medium
	medium daily. Note: It is normal to see cell debris and small colonies after passage.					
	 8. Move the vessel in several quick figure eight motions to disperse across the surface of the vessels. Place the vessel gently into the 3 incubator and incubate the cells overnight. 9. Feed the PSC cells beginning the second day after splitting. Repl 				into the 37°C, 5% CO_2	
		to e 2 n	each well of a vitr nL of medium afte	onectin-coated 6 er the cell susper	-well plate so that	Essential 8™ Medium each well contains ed. Refer to the table vessels.
		No cell init ado	te: Work with no m is after adding Esser ial effect of the EDT	ore than 1 to 3 we ntial 8™ Medium to TA. Some cell lines removed 1 well at	lls at a time, and wor the well(s), which c re-adhere very rapid	empt to recover them. It's quickly to remove quickly neutralizes the dly after medium ower to re-attach, and
		the Th	e colonies up. Avo ere may be obviou	id creating bubb us patches of cell	les. Collect cells in s that were not dis	
			pirate the EDTA s edium to the vesse		l pre-warmed com ble below).	plete Essential 8™
		5 n apj	ninutes. When the	e cells start to sep s in them when v	parate and round under a mice	ites or at 37°C for 4 to p, and the colonies croscope, they are
			d 0.5 mM EDTA i ow). Swirl the ves		0	SCs (refer to the table
		ves		BS without Calc	ium and Magnesii	PSCs and rinse the um (refer to the table
Passagin	g protocol		e-warm complete ture vessels (see p			and vitronectin-coated

Culture vessel	Surface area	DPBS	0.5 mM EDTA in DPBS	Complete Essential 8™ Medium
6-well plate	10 cm ² /well	2 mL/well	1 mL/well	2 mL/well
12-well plate	4 cm ² /well	1 mL/well	0.4 mL/well	1 mL/well
24-well plate	2 cm ² /well	0.5 mL/well	0.2 mL/well	0.5 mL/well
35-mm dish	10 cm ²	2 mL	1 mL	2 mL
60-mm dish	20 cm ²	4 mL	2 mL	4 mL
100-mm dish	60 cm ²	12 mL	6 mL	12 mL

Cryopreserving iPSCs

Freezing iPSCs in iPSC freezing		low the following protocol to cryopreserve iPSCs maintained on MEF-feeder ls by freezing them in iPSC freezing medium (see page 42 for recipe).
medium	1.	Prepare the required volume of fresh iPSC freezing medium and place it on ice (see page 42).
	2.	Aspirate the culture medium and rinse the dishes twice with D-PBS without Ca^{2+} and Mg^{2+} (2 mL per 35-mm or 4 mL per 60-mm dish).
	3.	Gently add Collagenase IV solution (page 39) to the culture dish (1 mL per 35-mm or 2 mL per 60-mm dish).
	4.	Incubate the dish with cells for 5–20 minutes in a 37° C incubator with a humidified atmosphere of 5% CO ₂ .
		Note: Incubation times may vary among different batches of collagenase. Therefore, the appropriate incubation time should be optimized by examining the colonies periodically under microscope during incubation.
	5.	Stop the incubation when the edges of the colonies are starting to pull away from the plate.
	6.	Remove the culture dish from the incubator, aspirate the Collagenase IV solution, and gently rinse the dish with D-PBS without Ca ²⁺ and Mg ²⁺ .
	7.	Add 2 mL of iPSC culture medium or DMEM/F-12 and gently dislodge the cells off the surface of the culture dish using a sterile pipette or a cell scraper. Transfer the cells to a sterile 15-mL centrifuge tube. Rinse the dish with additional iPSC medium or DMEM/F-12 to collect any leftover colonies.
	8.	Centrifuge the cells at $200 \times g$ for 2–4 minutes at room temperature.
	9.	Discard the supernatant, gently tap the tube to dislodge the cell pellet from the tube bottom, and resuspend the cells in freezing medium A . After the cell clumps have been uniformly suspended, add an equal volume of freezing medium B to the cell suspension in a drop-wise manner while gently swirling the cell suspension to mix.
		Note : At this point, the cells are in contact with DMSO, and work must be performed efficiently with no or minimal delays. After the cells come into contact with DMSO, they should be aliquoted and frozen within 2–3 minutes.
	10.	Aliquot 1 mL of the cell suspension into each cryovial.
	11.	Quickly place the cryovials containing the cells in a cryo freezing container (e.g., Mr. Frosty) to freeze the cells at 1°C per minute and transfer them to –80°C overnight.
	12.	After overnight storage at –80°C, transfer the cells to a liquid nitrogen tank vapor phase for long term storage.

Cryopreserving iPSCs, continued

Freezing iP Essential 8 [*] freezing me	Me Me	diun	the following proto n on vitronectin-co g medium (see page	ated culture dish		
n eezing me	1.	pla	pare the required v ce it on ice until use	2.		0
	_		e: Discard any remain		÷	
	2.	2. Aspirate the spent medium from the dish using a Pasteur pipette, and rins the cells twice with DPBS without Calcium and Magnesium (refer to the table below).				
	3.	var	d 0.5 mM EDTA so ious dish sizes, refe surface.			
	4.	4. Incubate the dish at room temperature for 5–8 minutes or at 37°C for 4–5 minutes. When the cells start to separate and round up, and the colonies appear to have holes in them when viewed under a microscope, they are ready to be removed from the vessel.				
	5.	-				
	6.	 6. Add 1 mL of ice-cold Essential 8[™] freezing medium to each well of a 6 plate. To adjust the volume of Essential 8[™] freezing medium for vario sizes, refer to the table below. 7. Remove the cells by gently squirting the colonies from the well using glass pipette. Avoid creating bubbles. Collect the cells in a 15-mL con tube and place on ice. 				
	7.					
	8. 9.		uspend the cells ge ovial.	ently. Aliquot 1 n	nL of the cell suspe	ension into each
		(e.g	ickly place the cryo ;., Mr. Frosty) to fre °C overnight.			
	10.		er overnight storag oor phase for long to		fer the cells to a liq	uid nitrogen tank
	Culture vess	el	Surface area	DPBS	0.5 mM EDTA in DPBS	Essential 8™ freezing medium
	6-well plate		10 cm ² /well	2 mL/well	1 mL/well	2 mL/well
	12-well plate		4 cm ² /well	1 mL/well	0.4 mL/well	1 mL/well
	24-well plate		2 cm ² /well	0.5 mL/well	0.2 mL/well	0.5 mL/well
	35-mm dish		10 cm ²	2 mL	1 mL	2 mL
	60-mm dish		20 cm ²	4 mL	2 mL	4 mL
	100-mm dish		60 cm ²	12 mL	6 mL	12 mL

Appendix D: Ordering Information

Accessory Products

CytoTune®-iPSFor more information about the following products, refer to our website at
www.lifetechnologies.com or contact Technical Support (page 57).

Product	Quantity	Catalog no.
CytoTune®-iPS 2.0 Sendai Reprogramming Kit	1×3 vials	A16517
CytoTune®-iPS 2.0 Sendai Reprogramming Kit (3 Pack)	3×3 vials	A16518
CytoTune®-EmGFP Sendai Fluorescence Reporter	1 vial	A16519

Media, sera, and reagents

For more information about the following products, refer to our website at **www.lifetechnologies.com** or contact Technical Support (page 57).

Product	Quantity	Catalog no.
DMEM with GlutaMAX [™] -I (high glucose)	500 mL	10569-010
KnockOut [™] DMEM/F-12	500 mL	12660-012
Essential 8 [™] Medium	1 kit	A1517001
StemPro [®] hESC SFM	1 kit	A1000701
StemPro [®] -34 SFM Medium (1X)	500 mL	10639-011
Fetal Bovine Serum (FBS), ES-Cell Qualified	500 mL	16141-079
KnockOut [™] Serum Replacement	500 mL	10828-028
Dulbecco's PBS (DPBS) without Calcium and Magnesium	500 mL	14190-144
MEM Non-Essential Amino Acids Solution (10 mM)	100 mL	11140-050
Basic Fibroblast Growth Factor (bFGF)	10 µg	PHG0264
SCF (C-Kit Ligand) Recombinant Human Protein	100 µg	PHC2111
FLT3 Ligand Recombinant Human Protein	10 µg	PHC9414
IL3 Recombinant Human Protein	10 µg	PHC0034
IL6 Recombinant Human Protein	10 µg	PHC0065
GM-CSF Recombinant Human Protein	100 µg	PHC2011
β-Mercaptoethanol, 55 mM	50 mL	21985-023
GlutaMAX [™] -I Supplement	100 mL	35050-061
L-Glutamine (200 mM)	100 mL	25030-081
Penicillin-Streptomycin, liquid	100 mL	15140-122

Accessory Products, continued

Cells

For more information about the following products, refer to our website at **www.lifetechnologies.com** or contact Technical Support (page 57).

Product	Quantity	Catalog no.
Gibco [®] Mouse Embryonic Fibroblasts (Irradiated)	1 mL	S1520-100
Human Dermal Fibroblasts, neonatal (HDFn)	1 vial	C-004-5C
StemPro®-34 Medium and CD34+ Cell Kit	1 kit	A14059

Matrices and dissociation reagents

For more information about the following products, refer to our website at **www.lifetechnologies.com** or contact Technical Support (page 57).

Product	Quantity	Catalog no.
Attachment Factor	100 mL	S-006-100
Vitronectin, truncated human recombinant (VTN-N)	1 mL	A14700
Geltrex [®] hESC-qualified Basement Membrane Matrix	5 mL	A14133-02
Collagenase Type IV	1 g	17104-01
0.05% Trypsin/EDTA Solution (1X)	100 mL	25300-054
TrypLE [™] Select Cell Dissociation Reagent	100 mL	12563-011
UltraPure [™] 0.5 M EDTA, pH 8.0	4 × 100 mL	15575-020
Versene Solution	100 mL	15040-066

Antibodies

For more information about the following products, refer to our website at **www.lifetechnologies.com** or contact Technical Support (page 57).

Product	Quantity	Catalog no.
Mouse anti-Tra1-60 antibody	100 µg	41-1000
Mouse anti-Tra1-81 antibody	100 µg	41-1100
Mouse anti-SSEA4	100 µg	41-4000
Alexa Fluor [®] 488 goat anti-mouse IgG (H+L) antibody	0.5 mL	A11029
Alexa Fluor [®] 594 goat anti-mouse IgG (H+L) antibody	0.5 mL	A11032
Alexa Fluor [®] 488 goat anti-rabbit IgG (H+L) antibody	0.5 mL	A11034
Alexa Fluor [®] 594 goat anti-rabbit IgG (H+L) antibody	0.5 mL	A11037

Equipment

For more information about the following products, refer to our website at **www.lifetechnologies.com** or contact Technical Support (page 57).

Product	Quantity	Catalog no.
Countess [®] Automated Cell Counter	1 unit	C10227
StemPro [®] EZPassage [™] Disposable Stem Cell Passaging Tool	10 units	23181-010

Accessory Products, continued

Reagents for RT-
PCRFor more information about the following products, refer to our website at
www.lifetechnologies.com or contact Technical Support (page 57).

Product	Quantity	Catalog no.
TRIzol [®] LS reagent	100 mL	10296-010
SuperScript [®] VILO [™] cDNA Synthesis Kit	50 reactions	11754-050
AccuPrime [™] SuperMix I	200 reactions	12342-010

TaqMan[®] Protein Assays

For more information about the following products, refer to our website at **www.lifetechnologies.com** or contact Technical Support (page 57).

Product	Quantity	Catalog no.
TaqMan [®] Protein Assay Kit (hOct3/4)	100 reactions	4405489
TaqMan® Protein Assay Kit (hSox2)	100 reactions	4405495

Documentation and Support

Obtaining Support

Technical Support	For the latest services and support information for all locations, go to www.lifetechnologies.com .		
	At the website, you can:		
	• Access worldwide telephone and fax numbers to contact Technical Support and Sales facilities		
	• Search through frequently asked questions (FAQs)		
	• Submit a question directly to Technical Support (techsupport@lifetech.com)		
	• Search for user documents, SDSs, vector maps and sequences, application notes, formulations, handbooks, certificates of analysis, citations, and other product support documents		
	Obtain information about customer training		
	Download software updates and patches		
Safety Data Sheets (SDS)	Safety Data Sheets (SDSs) are available at www.lifetechnologies.com/sds .		
Limited Product Warranty	Life Technologies Corporation and/or its affiliate(s) warrant their products as set forth in the Life Technologies' General Terms and Conditions of Sale found on Life Technologies' website at www.lifetechnologies.com/termsandconditions . If you have any questions, please contact Life Technologies at www.lifetechnologies.com/support .		

References

- Fusaki, N., Ban, H., Nishiyama, A., Saeki, K., and Hasegawa, M. (2009) Efficient induction of transgenefree human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc Jpn Acad Ser B Phys Biol Sci 85, 348-362
- Kuroya, M., Ishida, N., and Shiratori, T. (1953) Newborn virus pneumonitis (type Sendai). II. The isolation of a new virus. Tohoku J Exp Med 58, 62
- Li, H. O., Zhu, Y. F., Asakawa, M., Kuma, H., Hirata, T., Ueda, Y., Lee, Y. S., Fukumura, M., Iida, A., Kato, A., Nagai, Y., and Hasegawa, M. (2000) A cytoplasmic RNA vector derived from nontransmissible Sendai virus with efficient gene transfer and expression. J Virol 74, 6564-6569
- Meissner, A., Wernig, M., and Jaenisch, R. (2007) Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells. Nat Biotechnol 25, 1177-1181
- Park, I. H., Lerou, P. H., Zhao, R., Huo, H., and Daley, G. Q. (2008) Generation of human-induced pluripotent stem cells. Nat Protoc 3, 1180-1186
- Seki, T., Yuasa, S., Oda, M., Egashira, T., Yae, K., Kusumoto, D., Nakata, H., Tohyama, S., Hashimoto, H., Kodaira, M., Okada, Y., Seimiya, H., Fusaki, N., Hasegawa, M., and Fukuda, K. (2010) Generation of induced pluripotent stem cells from human terminally differentiated circulating T cells. Cell Stem Cell 7, 11-14
- Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., and Yamanaka, S. (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861-872
- Takahashi, K., and Yamanaka, S. (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663-676
- Wernig, M., Meissner, A., Foreman, R., Brambrink, T., Ku, M., Hochedlinger, K., Bernstein, B. E., and Jaenisch, R. (2007) In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448, 318-324
- Yu, J., Vodyanik, M. A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J. L., Tian, S., Nie, J., Jonsdottir, G. A., Ruotti, V., Stewart, R., Slukvin, II, and Thomson, J. A. (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917-1920

Headquarters

5791 Van Allen Way | Carlsbad, CA 92008 USA | Phone +1 760 603 7200 | Toll Free in USA 800 955 6288 For support visit lifetechnologies.com/support or email techsupport@lifetech.com

lifetechnologies.com

8 October 2013