Final QC report:
Generation of a Dual Reporter iPSC line

Mikkel Rasmussen
Bioneer A/S

17.06.2021

Bioneer A/S
Kogle Allé 2
DK-2970 Hørsholm

Tel + 45 45 16 04 44
Fax + 45 45 16 04 55
info@bioneer.dk
www.bioneer.dk
TABLE OF CONTENTS

Table of Contents ... i
Glossary ... 1
Aim ... 2
Executive Summary ... 2
Brief project description - TNNI3-IRES-mCherry reporter ... 3
Main Section ... 3
Gene editing ... 3
QC of TNNI3-IRES-mCherry reporter cl. 84-4 ... 3
Sterility Test .. 4
Viability Test and Morphology ... 4
Mycoplasma Test .. 4
Identity by STR Analysis ... 5
PCR and Sequencing .. 6
Karyotype ... 7
Brief project description - BIONi010-C-55 ... 8
Main Section ... 8
Gene editing ... 8
QC of BIONi010-C-55 dual reporter ... 8
Sterility Test .. 9
Viability Test and Morphology ... 9
Mycoplasma Test .. 9
Identity by STR Analysis ... 10
PCR and Sequencing .. 11
Karyotype ... 13
High Resolution Karyotype Analyses .. 14
Conclusion ... 15
Appendix ... 16
Gene editing strategy of TNNI3 and TNNI1 ... 16
GeneArt reporter plasmids ... 18
Crispr-Cas9 gene editing protocol .. 20
Karyotype reports .. 21
GLOSSARY

<table>
<thead>
<tr>
<th>Abbreviation / acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNNI3</td>
<td>Troponin I (Cardiac muscle)</td>
</tr>
<tr>
<td>TNNI1</td>
<td>Troponin I, type 1 (Cardiac slow muscle)</td>
</tr>
<tr>
<td>iPSC</td>
<td>Induced pluripotent stem cells</td>
</tr>
<tr>
<td>CRISPR</td>
<td>Clustered regularly interspaced short palindromic repeats</td>
</tr>
<tr>
<td>WCB</td>
<td>Working Cell Bank</td>
</tr>
</tbody>
</table>
AIM

The project aims at generating a heterozygous insertion of IRES-H2B-mCherry at the C-terminal end of the TNNI3 gene in the BIONi010-C wt Induced pluripotent stem cell (iPSC) line. When the insertion and line has been evaluated, a heterozygous insertion of IRES-d2EGFP at the C-terminal end of the TNNI1 gene will be carried out resulting in a dual reporter iPSC line.

EXECUTIVE SUMMARY

This report details the generation of a reporter line in the BIONi010-C wt iPSC line containing an IRES-H2B-mCherry in the C-terminal part of the TNNI3 gene. Furthermore, the TNNI3 reporter line was used to establish the a dual TNNI3/TNNI1 reporter iPSC line containing an additional IRES-d2EGFP in the C-terminal part of the TNNI1 gene. The project was carried out upon request of Pfizer Inc. Primary Pharmacology Group, Groton, CT, USA.

Following gene editing and single cell cloning, first a TNNI3 and subsequently a dual TNNI3/TNNI1 iPSC reporter line were successfully isolated. The lines were expanded to cell banks of 10 vials and characterized for the following analyses: Sterility, Viability/morphology, Mycoplasma testing, Identity by STR analysis, Genotyping, Karyology (G-banding), Single Nucleotide Polymorphism (SNP) analysis. 10 vials of each line containing 2-3 million cells each were shipped to Pfizer, US.
BRIEF PROJECT DESCRIPTION - TNNI3-IRES-mCherry REPORTER

The gene TNNI3 encodes the Troponin I (Cardiac muscle) protein which is expressed in mature cardiomyocytes.

In brief, a homologous donor construct encoding an IRES-H2B-mCherry flanked by homologous arms matching the C-terminal part of the TNNI3 gene was designed and ordered from GeneArt. The endofree plasmid was co-nucleofected together with the Cas9 protein and a sgRNA designed to target the last exon (Exon 7) of the TNNI3 gene after the STOP codon (Figure 1 and Appendix).

Figure 1: A single sgRNA and a CRISPR-Cas9 protein was used to insert the reporter in the last Exon after the STOP codon of the TNNI3 gene.

MAIN SECTION

Gene editing

The wt iPSC line BIONi010-C was nucleofected with CRISPR-Cas9 and edited clones were analyzed using TNNI3 screening and absence primers (see appendix). Several potential clones were identified and isolated for further analysis by PCR and sequencing. A TNNI3 reporter clone, named TNNI3-IRES-mCherry reporter cl. 84-4, was sequence verified and subjected to further single cell cloning to ensure the purity before expansion and banking in 15 vials.

QC of TNNI3-IRES-mCherry reporter cl. 84-4

Following banking of 15 vials, a single vial of each line was thawed and the following QC analyses were performed:

1) Sterility, Viability Test and Morphology
2) Identity by STR Analysis
3) Mycoplasma Test
4) Sequencing Analysis
5) Karyology by G-Banding
Sterility Test

1 ml of the supernatant from the BIONi010-C TNNI3 reporter line was transferred to 10 mL of LB medium without antibiotics. After 48 hours incubation in a 37°C shaker, the LB medium was still clean, indicating that no bacterial contamination was present in the bank.

Viability Test and Morphology

Survival of the BIONi010-C TNNI3 reporter line and typical iPS morphology was confirmed by microscope analysis 1 day after thawing in 2 wells of a 6-well dish (Figure 2).

![Figure 2: Microscope analyses was carried out 1 day after thawing in 2 wells of a 6-well dish.](image)

Mycoplasma Test

A mycoplasma test by PCR revealed that no mycoplasma contamination was present in the culture of the TNNI3 reporter line (Figure 3).

![Figure 3: Mycoplasma test for the TNNI3 reporter cl. 84-4](image)
Identity by STR Analysis

To confirm the correct identity of the gene-edited clone, an STR analysis was carried out on the TNNI3 reporter line after banking, which was identical to the original BIONi010-C wt iPSC line (Table 1)

Table 1: STR analysis of TNNI3 reporter clone

<table>
<thead>
<tr>
<th>Marker</th>
<th>BIONi010-C</th>
<th>TNNI3-IRESIRES-mCherry reporter cl. 84-4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Allele 1</td>
<td>Allele 2</td>
</tr>
<tr>
<td>AMEL</td>
<td>X</td>
<td>Y</td>
</tr>
<tr>
<td>CSF1PO</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>D13S317</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>D16S539</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>D18S51</td>
<td>13</td>
<td>16</td>
</tr>
<tr>
<td>D19S433</td>
<td>13</td>
<td>14.2</td>
</tr>
<tr>
<td>D21S11</td>
<td>28</td>
<td>32.2</td>
</tr>
<tr>
<td>D2S1338</td>
<td>22</td>
<td>23</td>
</tr>
<tr>
<td>D3S1358</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>D5S818</td>
<td>11</td>
<td>13</td>
</tr>
<tr>
<td>D7S820</td>
<td>9</td>
<td>11</td>
</tr>
<tr>
<td>D8S1179</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>FGA</td>
<td>21</td>
<td>24</td>
</tr>
<tr>
<td>TH01</td>
<td>7</td>
<td>9.3</td>
</tr>
<tr>
<td>TPOX</td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td>vWA</td>
<td>17</td>
<td></td>
</tr>
</tbody>
</table>
PCR and Sequencing

PCR and Sequencing analysis confirmed that the TNNI3-IRES-mCherry reporter cl. 84-4 contained both the IRES and the mCherry in one allele, as well as an intact wt allele (Figure 4).

![Image of PCR and Sequencing analysis](image)

Figure 4: PCR and sequencing analysis of the TNNI3 reporter. Sequencing showed a 100% match with the expected sequence.
Karyotype

The Karyotype of the TNNI3 reporter line was investigated by a conventional G-banding analysis. The analysis revealed a normal male karyotype (46, XY) (Figure 5 and appendix).

Figure 5: G-banding karyotype analysis revealed a normal male karyotype (46, XY).
BRIEF PROJECT DESCRIPTION - BIONi010-C-55

The gene TNNI1 encodes the Troponin I, type 1 protein (Cardiac slow muscle) expressed in mature cardiomyocytes.

In brief, a homologous donor construct encoding an IRES-d2EGFP flanked by homologous arms matching the C-terminal part of the TNNI1 gene was designed and ordered from GeneArt. The endofree double stranded plasmid was nucleofected together with the Cas9 protein and an sgRNA designed to target the 3'UTR of TNNI1 (Figure 6 and Appendix).

Figure 6: A single sgRNA and a CRISPR-Cas9 protein was used to insert the reporter in the 3' UTR of the TNNI1 gene.

MAIN SECTION

Gene editing

The iPSC line TNNI3-IRES-mCherry reporter cl. 84-4 described above was used for establishment of the dual TNNI3/1 reporter. The line was thawed and nucleofected using CRISPR-Cas9 and edited clones were analyzed using TNNI screening and absence primers (see appendix). Several potential clones were identified and isolated for further analysis by PCR and sequencing. A single TNNI1 reporter clone, named BIONi010-C-55 (dual TNNI3/TNNI1 reporter cl. 74) was sequence verified before expansion and banking in 50 vials.

QC of BIONi010-C-55 dual reporter

Following banking, a single vial was thawed and the following QC analyses were performed:

6) Sterility, Viability Test and Morphology
7) Identity by STR Analysis
8) Mycoplasma Test
9) Sequencing Analysis
10) Karyology by G-Banding
11) High Resolution Karyotype (SNP) using ddPCR (StemGenomics)
Sterility Test

1 ml of the supernatant from the BIONi010-C-55 dual reporter line was transferred to 10 mL of LB medium without antibiotics. After 48 hours incubation in a 37°C shaker, the LB medium was still clean, indicating that no bacterial contamination was present in the bank.

Viability Test and Morphology

Survival of the BIONi010-C-55 dual reporter line and typical iPSC morphology was confirmed by microscope analysis 1 day after thawing in 2 wells of a 6-well dish (Figure 7).

![Microscope analysis](image)

Figure 7: Microscope analyses was carried out 1 day after thawing in 2 wells of a 6-well dish.

Mycoplasma Test

A mycoplasma test by PCR revealed that no mycoplasma contamination was present in the culture of the BIONi010-C-55 dual reporter line (Figure 8).

![Mycoplasma test](image)

Figure 8: Mycoplasma test for BIONi010-C-55 dual reporter
Identity by STR Analysis

To confirm the correct identity of the gene-edited clone, an STR analysis was carried out on the BIONi010-C-55 dual reporter line after banking, which was identical to the original BIONi010-C wt iPSC line (Table 1)

Table 2: STR analysis of BIONi010-C-55 dual reporter

<table>
<thead>
<tr>
<th>Marker</th>
<th>BIONi010-C Allele 1</th>
<th>BIONi010-C-55 (dual TNNI3/TNNI1 reporter cl. 74) Allele 1</th>
<th>BIONi010-C Allele 2</th>
<th>BIONi010-C-55 (dual TNNI3/TNNI1 reporter cl. 74) Allele 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMEL</td>
<td>X</td>
<td>X</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>CSF1PO</td>
<td>10</td>
<td>10</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>D13S317</td>
<td>11</td>
<td>11</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>D16S539</td>
<td>10</td>
<td>10</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>D18S51</td>
<td>13</td>
<td>13</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>D19S433</td>
<td>13</td>
<td>13</td>
<td>14.2</td>
<td>14.2</td>
</tr>
<tr>
<td>D21S11</td>
<td>28</td>
<td>28</td>
<td>32.2</td>
<td>32.2</td>
</tr>
<tr>
<td>D2S1338</td>
<td>22</td>
<td>22</td>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td>D3S1358</td>
<td>15</td>
<td>15</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>D5S818</td>
<td>11</td>
<td>11</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>D7S820</td>
<td>9</td>
<td>9</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>D8S1179</td>
<td>13</td>
<td>13</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>FGA</td>
<td>21</td>
<td>21</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>TH01</td>
<td>7</td>
<td>7</td>
<td>9.3</td>
<td>9.3</td>
</tr>
<tr>
<td>TPOX</td>
<td>8</td>
<td>8</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>VWA</td>
<td>17</td>
<td>17</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PCR and Sequencing

PCR and Sequencing analysis confirmed that the BIONi010-C-55 dual reporter contained both the IRES-mCherry as well as an intact wt allele in TNNI3 and the IRES-d2EGFP as well as an intact wt allele in TNNI1 (Figure 9).
BIONi010-C-55 dual reporter sequencing of TNNI1-IRES-d2EGFP at the 5’ end

Figure 9: PCR and sequencing analysis of the BIONi010-C-55 dual reporter showed a 100% match with the expected sequences.
Karyotype

The Karyotype of the BIONi010-C-55 dual reporter line was investigated by a conventional G-band analysis. The analysis revealed a normal male karyotype (46, XY) (Figure 10 and appendix).

Figure 10: G-banding karyotype analysis revealed a normal male karyotype (46, XY).
High Resolution Karyotype Analyses

Single nucleotide polymorphisms (SNP) was analyzed using digital droplet PCR detection of the 24 most common SNP’s in iPSC’s (Stemgenomics). The dual reporter BIONi010-C-55 did not show any abnormalities (Figure 11).

Figure 11: High resolution karyotype revealed a normal SNP profile in the BIONi010-C-55 dual reporter.
CONCLUSION

One TNNI3-mCherry reporter and one TNNI3-mCherry/TNNI1-EGFP dual reporter were successfully established in the BIONi010-C wt iPSC line using CRISPR-Cas9 technology. The cells were banked and QC'ed in detail and the QC results were all normal. 10 vials of each of the iPSC lines were shipped to Pfizer Inc. Primary Pharmacology Group, Groton, CT, USA. Furthermore, 30 vials of BIONi010-C-55 will be shipped and deposited at EBiSC2.
APPENDIX

Gene editing strategy of TNNI3 and TNNI1

Alignment of TNNI mRNA with corresponding chromosomal region showing how the CRISPR’s are designed to target the last part of Exon 7. Screening and absence primers are also indicated.

Overview of TNNI3 gene and placement of Crispr in the last Exon 7 after the STOP codon

Overview of TNNI3 homologous donor reporter construct

Resulting gene editing of TNNI3
Overview of TNNI1 gene and placement of Crispr in the 3'UTR

Overview of TNNI1 homologous donor reporter construct

Resulting gene editing of TNNI1
GeneArt reporter plasmids

Quality Assurance Documentation

Project ID: 2020ABHEWP
Construct ID: 20AC2MJJP
Gene Name: TNN13_IRES_H2B_mCher
Gene Size: 2273 bp
Designation: E.coli K12 DH10B™ T1R
Vector Backbone: pMK-RQ (KanR)
Manufacturing Date: 14 September 2020
Quantity: ~5 µg Plasmid DNA

Product Description: The synthetic gene TNN13_IRES_H2B_mCher was assembled from synthetic oligonucleotides and/or PCR products. The fragment was inserted into pMK-RQ (KanR). The plasmid DNA was purified from transformed bacteria and concentration determined by UV spectroscopy. The final construct was verified by sequencing. The sequence identity within the insertion sites was 100%. 5 µg of the plasmid preparation were vacuum dried for shipping.

Product Handling: The delivered DNA amounts are indicated on the individual tube labels. Centrifuge tubes prior to opening. Do not store vacuum dried DNA for a prolonged time. Add an appropriate amount of distilled water or 10 mM Tris-HCl (pH 8.5) and incubate for 1 hour at room temperature (optionally followed by an overnight incubation at 4°C). Resuspend DNA by gently pipetting up and down a couple of times. If not to be used immediately, resuspended DNA should be stored at -20°C or -80°C. Storing as aliquots helps to reduce unfavorable freeze-thaw cycles. We recommend sequence verification after each subcloning respectively transformation step.

Plasmid Map:

![Plasmid Map](image)

Data Handling:
If you have subscribed to our convenient service to deliver all Quality Assurance Documentation (QAD) for your GeneArt orders electronically through Thermo Fisher Cloud, please follow this link to access your information: https://apps.thermofisher.com/apps/geneart-qad Alternatively, you can scan the QR code.
If you have not subscribed to this service, the QAD can be found on the CD included in your shipment. The QAD includes a .gb file containing the full vector information, a .fas file for your insert sequence only and if applicable, your ordered raw sequencing data.
Quality Assurance Documentation

ProjectID: 2021AANACOP
Gene Name: TNN11_IRES_d2EGFP
Designation: E.coli K12 OmniMAX™ 2 T1R
Manufacturing Date: 9 February 2021

ConstructID: 21AAS3AP
Gene Size: 2012 bp
Vector Backbone: pMA-T
Quantity: ~5 µg Plasmid DNA

Product Description: The synthetic gene TNN11_IRES_d2EGFP was assembled from synthetic oligonucleotides and/or PCR products. The fragment was inserted into pMA-T. The plasmid DNA was purified from transformed bacteria and concentration determined by UV spectroscopy. The final construct was verified by sequencing. The sequence identity within the insertion sites was 100%. 5 µg of the plasmid preparation were vacuum dried for shipping.

Product Handling: The delivered DNA amounts are indicated on the individual tube labels. Centrifuge tubes prior to opening. Do not store vacuum dried DNA for a prolonged time. Add an appropriate amount of distilled water or 10 mM Tris-HCl (pH 8.0) and incubate for 1 hour at room temperature (optionally followed by an overnight incubation at 4°C). Resuspend DNA by gently pipetting up and down a couple of times. If not to be used immediately, resuspended DNA should be stored at -20°C or -80°C. Storing as aliquots helps to reduce unfavorable freeze-thaw cycles. We recommend sequence verification after each subcloning respectively transformation step.

Plasmid Map:

Data Handling: If you have subscribed to our convenient service to deliver all Quality Assurance Documentation (QAD) for your GeneArt orders electronically through Thermo Fisher Cloud, please follow this link to access your information: https://apps.thermofisher.com/apps/geneart-qad. Alternatively, you can scan the QR code.
If you have not subscribed to this service, the QAD can be found on the CD included in your shipment. The QAD includes a .gb file containing the full vector information, a .fas file for your insert sequence only, and if applicable, your ordered raw sequencing data.
Crispr-Cas9 gene editing protocol
Mikkel Rasmussen 10.10.2020

Project: Generation of a dual reporter iPSC line (Pfizer #10514)

Cells and culture conditions: BIONi010-C P27 iPSC line in mTeSR+/Matrigel without P/S

Day 0: Cas9 Protein nucleofection:
1. Place required amount of culture medium (mTesR) at RT and add 1:100 Revitacell.
2. Add 1 ml Matrigel (diluted 1:25 in cold DMEM/F12) pr. 2 wells of a 6-well dish pr. nucleofection. Incubate for min. 30 min at 37°C.
3. Prepare sgRNA’s by diluting synthetic sgRNA’s to 100µM in duplex buffer (IDT; e.g. 20µl to 2nmol).
4. Mix RNP complex by adding the following in a 1.5 ml Eppendorf tube and incubate at RT for 15 min:
 a. 2 µl sgRNA (100µM) + 2 µl Cas9 protein
5. Accutase cells for 10 min at 37°C. Transfer to 15 ml Falcon tube containing 1:3 culture medium
6. Count and spin down 1x10^6 cells pr. nucleofection at 120g for 5 min.
7. Suck off medium and resuspend cells gently in 100 µl P3 solution (82 µl P3 buffer and 18 µl supplement) pr. nucleofection.
8. Add the following to the RNP mixes from step 4 just prior to nucleofection:
 a. 5 µl endofree donor plasmid (1 µg/µl)
9. Transfer 100µl cells in P3 solution to the Eppendorf tube with the first RNP mix, resuspend briefly up and down and transfer to tubes containing the RNP complex and further to the nucleofection cuvette without bubbles. Repeat the process for the next reaction/nucleofection.
10. Nucleofect cells using program CA167
11. Immediately add 500 µl RT culture medium (mTeSR) without P/S + 1:100 Revitacell and incubate for 5-10 min at 37°C while preparing culture dishes.
12. Suck off Matrigel from the 6-cm dish and add 1,5 ml RT culture medium without P/S + 1:100 Revitacell to the upper wells only.
13. Transfer the nucleofected cells to the upper well of the 6-well dish, resuspend gently and transfer 1 ml to the lower wells (1:1 dilution).

Day 1: Change culture medium without Revitacell. Change medium every or every second day.

Day 5: When the cells are around 80% confluent, Accutase treat and split 250.000 cells from the upper well in a new 6-well with 1:100 Revitacell and place in the low O2 incubator for 2-3 days for single cell sorting. Spin down the remaining cells for QC lysis and PCR validation.

When confluent, EDTA split the lower well and freeze in 2 vials as a backup.

Day 7: Perform sorting of single cells into Matrigel-coated 96-well dishes in 50 culture medium + 1:100 P/S containing 1:10 CloneR using the Cytena f.sight dispenser.

Day 14: Change the medium to 200µl culture medium + 1:100 P/S without CloneR. Replace culture medium every 2nd or 3rd day.

D21: When colonies cover a good part of the wells, replica plate the 96-well dish with EDTA. Transfer half of the cells for DNA purification and the rest to a new Matrigel-coated 96-well dish with culture medium + P/S. Spin down the PCR plate and proceed with PCR screening and sequencing in the DNA lab to detect gene edited clones.

D28: When positive clones are identified by PCR and sequencing, EDTA treat and transfer individual clones to a well in a Matrigel 6-well dish for subsequent expansion and banking.
Karyotype reports

Universitätsklinikum Tübingen
Institut für Medizinische Genetik und Angewandte Genomik
Stuttgart 70629

Dr. rer. nat. Benjamin Schmidt
Universität Kopenhagen
Bioneer A/S
Kögle Alle 2
DK 2870 Høsherholm

Report of chromosome analysis

Patient: ZELLESEMENT, Bieneer
case number (file number): SEDI-210306/2021
specimen received: fixed PSC
description: Zelllinien Charakterisierung - TNN/3 cR84-4 P10 14-01-2021 bms, P10, m, 10551, BMS, 20.01.21

date of report: 26.01.2021
arrival date: 21.01.2021

Dear Dr. Schmidt,

we got the above mentioned fixed cell suspension for chromosome analysis. After preparation of the fixed cells, banding and evaluation we found the following:

Karyotype (ISCN 2016): 46,XY
conclusion: normal male karyotype

Human genetic interpretation:
Chromosome analysis revealed a normal male karyotype.
Up to the reach of banding quality there is no hint for a numerical or structural abnormality (variable single cell abnormalities will not be reported).
counted metaphases: 16
structurally evaluated: 7
bANDING quality: 50
type of banding: G-bands
structural variants: none

Limitations:
Very small aberrations (e.g. microdeletions) as well as low level mosaicism might not be detected. Molecular genetic changes (DNA level) can not be diagnosed by karyotyping.

General directions:
Please find more information concerning cytogenetic analyses, indication, withdrawing of blood or other probes and shipment/mailing in www.uni-tuebingen.de/Klinische_Genetik/de/d-cytagenetik.html.
The use of theses results for scientific or other reasons needs authorization of our institute.

Thank you very much for sending the sample. For today we remain with kindest regards
With kind regards,

Prof. Dr. med. O. Rieß
Chair of Human Genetics
Institute director

Dr. med. U. Mau-Holm
Chair of Human Genetics
Cytogeneticist

Cytogenetische Diagnostik Tel. +49 7071 29 1204 oder 722905 | Fax: +49 7071 29 4493

Universitätsklinikum Tübingen
Anstalt des öffentlichen Rechts, Stift Tübingen
Steuer-Nr. 8/115/18400
UST-ID: DE 146 889 674
Gdestieg 1
72070 Tübingen
Tel. +49 7071 29 0
www.medizin-tuebingen.de

Aufzeichnung
Oluf G·nosmal (Institutsdirektor)

Prof. Dr. Michael Baehner (Institutsdirektor)

Prof. Dr. Karl Uwe Kranz-Butscher

Prof. Dr. Bernd Pfitzer

Klaus Thieher
Report of chromosome analysis

Patient: ZELLESYSTEM, Bioneer
case number (file number): S20-24909 (20202350)
 specimen received: fingered PSC

description: Zellkern-Charakterisierung - BIONIC® C-SS PSC P18 Karyo 20.05.2021 FGS, BIONIC® C-SS PSC Karyo 20.05.2021 FGS, P18, m, 10551, RGS, 25.05.2021

date of report: 14.06.2021
arrived date: 29.05.2021

Dear Dr. Schmid,

we got the above mentioned fingered cell suspension for chromosome analysis. After preparation of the fixed cells, banding and evaluation we found the following:

Karyotype (ISCN 2020): 46,XY
conclusion: normal male karyotype

Chromosome analysis revealed a normal male karyotype. There was no hint for a numerical or structural abnormality (variable single cell abnormalities will not be reported).

Thank you very much for sending the sample. For today we remain with kindest regards.

With kind regards,

Dr. med. D. Rieß
Head of Human Genetics
Universitätsklinikum Tübingen

Dr. med. U. Mau-Holmke
Head of Human Genetics
Universitätsklinikum Tübingen

Cytogenetic Diagnostics: Tel.: +49 7071 22-7226 Fax: +49 7071 22-4433